Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Xviii

Proc. SPIE Vol. 2766, March 1996 p. 185-201, Thermosense XVIII An International Conference on Thermal Sensing and Imaging... [Pg.407]

The solid-gas interface and the important topics of physical adsorption, chemisorption, and catalysis are addressed in Chapters XVI-XVIII. These subjects marry fundamental molecular studies with problems of great practical importance. Again the emphasis is on the basic aspects of the problems and those areas where modeling complements experiment. [Pg.3]

The adsorption of nonelectrolytes at the solid-solution interface may be viewed in terms of two somewhat different physical pictures. In the first, the adsorption is confined to a monolayer next to the surface, with the implication that succeeding layers are virtually normal bulk solution. The picture is similar to that for the chemisorption of gases (see Chapter XVIII) and arises under the assumption that solute-solid interactions decay very rapidly with distance. Unlike the chemisorption of gases, however, the heat of adsorption from solution is usually small it is more comparable with heats of solution than with chemical bond energies. [Pg.390]

This chapter concludes our discussion of applications of surface chemistry with the possible exception of some of the materials on heterogeneous catalysis in Chapter XVIII. The subjects touched on here are a continuation of Chapter IV on surface films on liquid substrates. There has been an explosion of research in this subject area, and, again, we are limited to providing just an overview of the more fundamental topics. [Pg.537]

We have considered briefly the important macroscopic description of a solid adsorbent, namely, its speciflc surface area, its possible fractal nature, and if porous, its pore size distribution. In addition, it is important to know as much as possible about the microscopic structure of the surface, and contemporary surface spectroscopic and diffraction techniques, discussed in Chapter VIII, provide a good deal of such information (see also Refs. 55 and 56 for short general reviews, and the monograph by Somoijai [57]). Scanning tunneling microscopy (STM) and atomic force microscopy (AFT) are now widely used to obtain the structure of surfaces and of adsorbed layers on a molecular scale (see Chapter VIII, Section XVIII-2B, and Ref. 58). On a less informative and more statistical basis are site energy distributions (Section XVII-14) there is also the somewhat laige-scale type of structure due to surface imperfections and dislocations (Section VII-4D and Fig. XVIII-14). [Pg.581]

The composition and chemical state of the surface atoms or molecules are very important, especially in the field of heterogeneous catalysis, where mixed-surface compositions are common. This aspect is discussed in more detail in Chapter XVIII (but again see Refs. 55, 56). Since transition metals are widely used in catalysis, the determination of the valence state of surface atoms is important, such as by ESCA, EXAFS, or XPS (see Chapter VIII and note Refs. 59, 60). [Pg.581]

Some fascinating effects occur in the case of CO on Pt(lOO). As illustrated in Fig. XVI-8, the clean surface is reconstructed naturally into a quasi-hexag-onal pattern, but on adsorption of CO, this reconstruction is lifted to give the bulk termination structure of (110) planes [56]. As discussed in Section XVIII-9E very complicated changes in surface structure occur on the oxidation of CO... [Pg.590]

The following several sections deal with various theories or models for adsorption. It turns out that not only is the adsorption isotherm the most convenient form in which to obtain and plot experimental data, but it is also the form in which theoretical treatments are most easily developed. One of the first demands of a theory for adsorption then, is that it give an experimentally correct adsorption isotherm. Later, it is shown that this test is insufficient and that a more sensitive test of the various models requires a consideration of how the energy and entropy of adsorption vary with the amount adsorbed. Nowadays, a further expectation is that the model not violate the molecular picture revealed by surface diffraction, microscopy, and spectroscopy data, see Chapter VIII and Section XVIII-2 Steele [8] discusses this picture with particular reference to physical adsorption. [Pg.603]

Infrared Spectroscopy. The infrared spectroscopy of adsorbates has been studied for many years, especially for chemisorbed species (see Section XVIII-2C). In the case of physisorption, where the molecule remains intact, one is interested in how the molecular symmetry is altered on adsorption. Perhaps the conceptually simplest case is that of H2 on NaCl(lOO). Being homo-polar, Ha by itself has no allowed vibrational absorption (except for some weak collision-induced transitions) but when adsorbed, the reduced symmetry allows a vibrational spectrum to be observed. Fig. XVII-16 shows the infrared spectrum at 30 K for various degrees of monolayer coverage [96] (the adsorption is Langmuirian with half-coverage at about 10 atm). The bands labeled sf are for transitions of H2 on a smooth face and are from the 7 = 0 and J = 1 rotational states Q /fR) is assigned as a combination band. The bands labeled... [Pg.634]

The plan of this chapter is as follows. We discuss chemisorption as a distinct topic, first from the molecular and then from the phenomenological points of view. Heterogeneous catalysis is then taken up, but now first from the phenomenological (and technologically important) viewpoint and then in terms of current knowledge about surface structures at the molecular level. Section XVIII-9F takes note of the current interest in photodriven surface processes. [Pg.686]

The technique of low-energy electron diffraction, LEED (Section VIII-2D), has provided a considerable amount of information about the manner in which a chemisorbed layer rearranges itself. Somotjai [13] has summarized LEED results for a number of systems. Some examples are collected in Fig. XVlII-1. Figure XVIII-la shows how N atoms are arranged on a Fe(KX)) surface [14] (relevant to ammonia synthesis) even H atoms may be located, as in Fig. XVIII-Ih [15]. Figure XVIII-Ic illustrates how the structure of the adsorbed layer, or adlayer, can vary wiA exposure [16].f There may be a series of structures, as with NO on Ru(lOTO) [17] and HCl on Cu(llO) [18]. Surface structures of... [Pg.686]

Figure XVIII-2 shows how a surface reaction may be followed by STM, in this case the reaction on a Ni(llO) surface O(surface) + H2S(g) = H20(g) + S(surface). Figure XVIII-2a shows the oxygen atom covered surface before any reaction, and Fig. XVIII-2h, the surface after exposure to 3 of H2S during which Ni islands and troughs have formed on which sulfur chemisorbs. The technique is powerful in the wealth of detail provided on the other hand, there is so much detail that it is difficult to relate it to macroscopic observation (such as the kinetics of the reaction). Figure XVIII-2 shows how a surface reaction may be followed by STM, in this case the reaction on a Ni(llO) surface O(surface) + H2S(g) = H20(g) + S(surface). Figure XVIII-2a shows the oxygen atom covered surface before any reaction, and Fig. XVIII-2h, the surface after exposure to 3 of H2S during which Ni islands and troughs have formed on which sulfur chemisorbs. The technique is powerful in the wealth of detail provided on the other hand, there is so much detail that it is difficult to relate it to macroscopic observation (such as the kinetics of the reaction).
Electronic spectra of surfaces can give information about what species are present and their valence states. X-ray photoelectron spectroscopy (XPS) and its variant, ESC A, are commonly used. Figure VIII-11 shows the application to an A1 surface and Fig. XVIII-6, to the more complicated case of Mo supported on TiOi [37] Fig. XVIII-7 shows the detection of photochemically produced Br atoms on Pt(lll) [38]. Other spectroscopies that bear on the chemical state of adsorbed species include (see Table VIII-1) photoelectron spectroscopy (PES) [39-41], angle resolved PES or ARPES [42], and Auger electron spectroscopy (AES) [43-47]. Spectroscopic detection of adsorbed hydrogen is difficult, and... [Pg.690]

Fig. XVIII-7. Br(3p) XPS spectra of a 2.2-L dose of DBr on Pt(l 11) before (a) and (b) after UV irradiation. The 182.8-eV peak is due to DBr and the 181.5 peak, to atomic Br. On irradiation the latter peak increases relative to the former [38]. (Reprinted with permission from American Chemical Society, copyright 1992.)... Fig. XVIII-7. Br(3p) XPS spectra of a 2.2-L dose of DBr on Pt(l 11) before (a) and (b) after UV irradiation. The 182.8-eV peak is due to DBr and the 181.5 peak, to atomic Br. On irradiation the latter peak increases relative to the former [38]. (Reprinted with permission from American Chemical Society, copyright 1992.)...
On setting dRIdt = 0 (and using Eq. XVIII-1), we obtain an equation due to Redhead [89] ... [Pg.697]

Fig. XVIII-11. Calorimetric differential heat of adsorption of H2 on ZnO. Dashed line differential heat of desorption. (From Ref. 104.)... Fig. XVIII-11. Calorimetric differential heat of adsorption of H2 on ZnO. Dashed line differential heat of desorption. (From Ref. 104.)...
XVIII-11 (the paradox of desorption heat exceeding adsorption heat is explainable in terms of a partial irreversibility of the adsorption-desorption process). [Pg.699]

Surface heterogeneity may merely be a reflection of different types of chemisorption and chemisorption sites, as in the examples of Figs. XVIII-9 and XVIII-10. The presence of various crystal planes, as in powders, leads to heterogeneous adsorption behavior the effect may vary with particle size, as in the case of O2 on Pd [107]. Heterogeneity may be deliberate many catalysts consist of combinations of active surfaces, such as bimetallic alloys. In this last case, the surface properties may be intermediate between those of the pure metals (but one component may be in surface excess as with any solution) or they may be distinctly different. In this last case, one speaks of various effects ensemble, dilution, ligand, and kinetic (see Ref. 108 for details). [Pg.700]


See other pages where Xviii is mentioned: [Pg.478]    [Pg.2]    [Pg.305]    [Pg.584]    [Pg.591]    [Pg.634]    [Pg.634]    [Pg.637]    [Pg.638]    [Pg.685]    [Pg.686]    [Pg.687]    [Pg.688]    [Pg.689]    [Pg.692]    [Pg.694]    [Pg.696]    [Pg.696]    [Pg.696]    [Pg.697]    [Pg.697]    [Pg.698]    [Pg.698]    [Pg.699]    [Pg.699]    [Pg.699]    [Pg.699]    [Pg.700]    [Pg.700]    [Pg.701]    [Pg.701]    [Pg.701]   
See also in sourсe #XX -- [ Pg.92 , Pg.103 ]




SEARCH



Accident ■ xviii

Acid, xviii

Alternatives, xviii

Atomic number, xviii

Carbohydrates, xviii

Chlorophyll, xviii

Conditioning, xiii, xviii

Configuration interaction, xviii

Contaminants/Contamination, xviii

Cost, xviii

Desorption, xviii

Detection, xviii

Gymnemic acid I-VI,VIII,XVIII as sweetness inhibitors

Gymnemic acid I-VI,VIII,XVIII structures

History, xviii

Hudson, Claude Silbert obituary of, 9, xiii-xviii

Hudson, Claude Silbert, obituary 9:xiii—xviii

Initiator xviii

Interface xviii

Laser, xviii

Life, xviii

Louis XVIII

Mass spectrometry, xviii

Matrix xviii

Mendeleev Congresses (XVIII

Methacrylate xviii

Meyer, Kurt Heinrich obituary of, 11, xiii-xviii

Meyer, Kurt Heinrich, obituary xiii-xviii

Naphthalene, xviii

Polymer, xviii

Porous, xviii

Reaction XVIII.—Ring Formation by Elimination of Water from certain Molecules

Roles, xviii

Rules of thumb refrigeration, xviii

Rules of thumb utilities, common specifications, xviii

Rules of thumb vessels , xviii

Stephanotis lutchuensis Koidz. var sitakisoside XVIII from

Sweetness inhibitors sitakisoside XVIII

Transportation, xviii

Volume XVIII

© 2024 chempedia.info