Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

X-ray exciton

The X-ray excitation process frequently is analyzed in terms of an excitonic electron hole pair (e.g. Cauchois and Mott 1949). The excitonic approach to X-ray absorption spectra accounts for the fact that the excited state is a hydrogen-like bound state. The X-ray exciton is different from the well-known optical excitons. In the latter cases the ejected electron polarizes a macroscopic fraction of the crystal-fine volume because the lifetime of optical excitations is in the order of lO s. The lifetime of the excited deep core level state, however, is in the order of 10 — 10 s, much too short to p-obe more than the direct vicinity of excited atom. Following Haken and Schottky (1958) the distance r between the ejected electron and core hole of an excited atom for E = 1 turns out to be r oc [h/(2m 0))] Here m denotes the effective mass of the ejected electron, to is the phonon frequency and is the dielectric constant. A numerical estimate yields r 10 A. Thus the information obtainable in an L, spectrum of the solid is very local the measurement probes essentially the 5d state of the absorbing atom as modified from the atomic 5d states by its immediate neighbors only. It is not suited to give information about extended Bloch states. On the other hand it is well suited to extract information about local correlations within the 5d conduction electrons, whose proper treatment is at the heart of the difficulty of the theory of narrow band materials and about chemical binding effects. [Pg.477]


See other pages where X-ray exciton is mentioned: [Pg.453]    [Pg.477]    [Pg.478]   
See also in sourсe #XX -- [ Pg.473 , Pg.474 ]




SEARCH



Exciton

Exciton/excitonic

Excitons

© 2024 chempedia.info