Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wittig reaction carbonyl

The phosphorus ylides of the Wittig reaction can be replaced by trimethylsilylmethyl-carbanions (Peterson reaction). These silylated carbanions add to carbonyl groups and can easily be eliminated with base to give olefins. The only by-products are volatile silanols. They are more easily removed than the phosphine oxides or phosphates of the more conventional Wittig or Homer reactions (D.J. Peterson, 1968). [Pg.33]

The Julia-Lythgoc olefination operates by addition of alkyl sulfone anions to carbonyl compounds and subsequent reductive deoxysulfonation (P. Kocienski, 1985). In comparison with the Wittig reaction, it has several advantages sulfones are often more readily available than phosphorus ylides, and it was often successful when the Wittig olefination failed. The elimination step yields exclusively or predominantly the more stable trans olefin stereoisomer. [Pg.34]

Another very important reaction initially involving nucleophilic attack on an aldehyde carbonyl is the Wittig reaction. An yUd adds to the carbonyl forming a betaine intermediate which then decomposes to produce an olefin and a tertiary phosphine oxide. [Pg.471]

A useful apphcation of phosphines for replacing a carbonyl function with a carbon—carbon double bond is the Wittig reaction (91). A tertiary phosphine, usually triphenylphosphine, treated with the appropriate alkyl halide which must include at least one a-hydrogen, yields the quaternary salt [1779A9-3] which is then dehydrohalogenated to form the Wittig reagent, methylenetriphenylphosphorane [19943-09-5] an yhde. [Pg.381]

The use of a vinylphosphonium salt as the source of the QQ fragment instead of the more commonly employed 1,2-dicarbonyl substrate is illustrated by the pyrrole synthesis in Scheme 79b (8UOC2570). A particularly interesting feature is the intramolecular Wittig reaction with an amide carbonyl group. A very useful synthesis of pyrroles depends upon the addition of the anion of p-toluenesulfonylmethyl isocyanide (TOSMIC) to a,/3-unsatur-... [Pg.132]

Much better known are the fluonnatedphosphoranes, which have been widely used m the Wittig reaction for the preparation of fluoroolefms Difluoromethylena tion reactions have been effected by using a variety of conditions Treatment of dibromodifluoromethane with two equivalents of tns(dimethylammo)phosphine m carefully dried tnglyme yields a solution of bromodifluoromethylphosphonium broomide, which very effectively converts ketones to difluoromethylene derivatives A more sensitive reagent is prepared by the addihon of two equivalents of the phosphine to the reaction mixture of fluorohalomethane and a carbonyl compound [39, 40] (equation 40) (Table 14)... [Pg.581]

The Wittig reaction, for which George Wittig received the 1979 Nobel Prize in Chemistry, is an important synthetic procedure for converting aldehydes and ketones into alkenes. The active reagent is a phosphorous ylide which undergoes nucleophilic addition to the carbonyl carbon, e.g., for addition of triphenylphosphinemethylidene to acetone. [Pg.144]

With respect to the carbonyl substrate, a variety of additional functional groups is tolerated, e.g. ester, ether, halogen. With compounds that contain an ester as well as a keto or aldehyde function, the latter usually reacts preferentially. Due to its mild reaction conditions the Wittig reaction is an important method for the synthesis of sensitive alkenes, as for example highly unsaturated compounds like the carotinoid 17 shown above. [Pg.296]

Show how the Wittig reaction might be used to prepare the following alkencs. Identify the alkyl halide and the carbonyl components that would be used. [Pg.741]

It should be noted here that the lithium salt of hexamethyldisilazane li-HMDS 492 (and Na-HMDS-(486) and K-HMDS in Sections 5.1.2 and 5.1.3), which is readily obtained on treatment of a solution of HMDS 2 in hexane or THF with butyUithium at -78 °C, is not only a very useful and selective strong base, e.g. for Wittig reactions, but can also add to carbonyl groups to yield the silylated Schiff bases or nitriles (cf. Sections 4.7 and 5.1.3) or to nitriles to afford N-silylated ami-dines. Alkylation of the Li-HMDS 492, e.g. with allyl bromide, affords, furthermore, N,N-bis(trimethylsilylated) primary amines such as 43 [64]. The combina-... [Pg.16]

Wittig reactions are versatile and useful for preparing alkenes, under mild conditions, where the position of the double bond is known unambiguously. The reaction involves the facile formation of a phosphonium salt from an alkyl halide and a phosphine. In the presence of base this loses HX to form an ylide (Scheme 1.15). This highly polar ylide reacts with a carbonyl compound to give an alkene and a stoichiometric amount of a phosphine oxide, usually triphenylphosphine oxide. [Pg.28]

The stereoselectivity of the Wittig reaction is believed to be the result of steric effects that develop as the ylide and carbonyl compound approach one another. The three phenyl substituents on phosphorus impose large steric demands that govern the formation of the diastereomeric adducts.240 Reactions of unstabilized phosphoranes are believed to proceed through an early TS, and steric factors usually make these reactions selective for the d.v-alkcnc.241 Ultimately, however, the precise stereoselectivity is dependent on a number of variables, including reactant structure, the base used for ylide formation, the presence of other ions, solvent, and temperature.242... [Pg.159]

Olefination Reactions Involving Phosphonate Anions. An important complement to the Wittig reaction involves the reaction of phosphonate carbanions with carbonyl compounds 253 The alkylphosphonic acid esters are made by the reaction of an alkyl halide, preferably primary, with a phosphite ester. Phosphonate carbanions are generated by treating alkylphosphonate esters with a base such as sodium hydride, n-butyllithium, or sodium ethoxide. Alumina coated with KF or KOH has also found use as the base.254... [Pg.164]

Carbanions derived from phosphine oxides also add to carbonyl compounds. The adducts are stable but undergo elimination to form alkene on heating with a base such as sodium hydride. This reaction is known as the Horner-Wittig reaction.268... [Pg.170]

The carbonyl group of l-oxo-2-alkenylphosphonates (57) undergoes stereoselective Wittig reaction with acylidenephosphoranes... [Pg.309]

Viewed systematically, formation of the olefins 24 on reaction of methyleneoxo-phosphorane 9 with a,P-unsaturated carbonyl compounds is to be classified as an olefination reaction. The similarity to the Wittig reaction is obvious, the differences being just a matter of degree. [Pg.80]


See other pages where Wittig reaction carbonyl is mentioned: [Pg.497]    [Pg.637]    [Pg.757]    [Pg.757]    [Pg.35]    [Pg.757]    [Pg.497]    [Pg.637]    [Pg.757]    [Pg.757]    [Pg.35]    [Pg.757]    [Pg.31]    [Pg.48]    [Pg.731]    [Pg.732]    [Pg.210]    [Pg.340]    [Pg.731]    [Pg.732]    [Pg.295]    [Pg.736]    [Pg.1151]    [Pg.69]    [Pg.390]    [Pg.425]    [Pg.494]    [Pg.533]    [Pg.551]    [Pg.752]    [Pg.769]    [Pg.8]    [Pg.126]    [Pg.185]    [Pg.63]    [Pg.312]   
See also in sourсe #XX -- [ Pg.1371 ]




SEARCH



Carbonyl Wittig-type reactions

Carbonyl compounds Wittig reaction

Carbonyl compounds, a-oxygenated Wittig reaction

Carbonyl compounds, addition reactions Wittig reaction

Condensation of Phosphonium Ylides with Carbonyl Compounds Wittig Reaction

The Wittig and Related Carbonyl Olefination Reactions

Wittig reactions amino carbonyl

© 2024 chempedia.info