Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Weighted residual finite element scheme

Development of weighted residual finite element schemes that can yield stable solutions for hyperbolic partial differential equations has been the subject of a considerable amount of research. The most successful outcome of these attempts is the development of the streamline upwinding technique by Brooks and Hughes (1982). The basic concept in the streamline upwinding is to modify the weighting function in the Galerkin scheme as... [Pg.54]

Weighted residual finite element methods described in Chapter 2 provide effective solution schemes for incompressible flow problems. The main characteristics of these schemes and their application to polymer flow models are described in the present chapter. [Pg.71]

The weighted residual method provides a flexible mathematical framework for the construction of a variety of numerical solution schemes for the differential equations arising in engineering problems. In particular, as is shown in the followmg section, its application in conjunction with the finite element discretizations yields powerful solution algorithms for field problems. To outline this technique we consider a steady-state boundary value problem represented by the following mathematical model... [Pg.41]

The standard least-squares approach provides an alternative to the Galerkin method in the development of finite element solution schemes for differential equations. However, it can also be shown to belong to the class of weighted residual techniques (Zienkiewicz and Morgan, 1983). In the least-squares finite element method the sum of the squares of the residuals, generated via the substitution of the unknown functions by finite element approximations, is formed and subsequently minimized to obtain the working equations of the scheme. The procedure can be illustrated by the following example, consider... [Pg.64]

Derivation of the working equations of upwinded schemes for heat transport in a polymeric flow is similar to the previously described weighted residual Petrov-Galerkm finite element method. In this section a basic outline of this derivation is given using a steady-state heat balance equation as an example. [Pg.91]

The inconsistent streamline upwind scheme described in the last section is fonuulated in an ad hoc manner and does not correspond to a weighted residual statement in a strict sense. In tins seetion we consider the development of weighted residual schemes for the finite element solution of the energy equation. Using vector notation for simplicity the energy equation is written as... [Pg.131]

One of the most populax numerical methods for this class of problems is the method of weighted residuals (MWR) (7,8). For a complete discussion of these schemes several good numerical analysis texts are available (9,10,11). Orthogonal collocation on finite elements was used in this work to solve the model as detailed by Witkowski (12). [Pg.104]

The most common methodology when solving transient problems using the finite element method, is to perform the usual Garlerkin weighted residual formulation on the spatial derivatives, body forces and time derivative terms, and then using a finite difference scheme to approximate the time derivative. The development, techniques and limitations that we introduced in Chapter 8 will apply here. The time discretization, explicit and implicit methods, stability, numerical diffusion etc., have all been discussed in detail in that chapter. For a general partial differential equation, we can write... [Pg.466]


See other pages where Weighted residual finite element scheme is mentioned: [Pg.65]    [Pg.141]    [Pg.65]    [Pg.141]    [Pg.18]    [Pg.18]    [Pg.72]    [Pg.513]    [Pg.43]    [Pg.54]    [Pg.1092]   
See also in sourсe #XX -- [ Pg.54 , Pg.65 , Pg.141 ]




SEARCH



Element schemes

Finite scheme

Finite-element

Residual elements

Residual, weighted residuals

Weighted residual

Weighted residual scheme

Weighting scheme

© 2024 chempedia.info