Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water molecule, canonical molecular orbitals

CANONICAL LONE PAIR ORBITALS Figure 1 Canonical molecular orbitals for the water molecule... [Pg.3201]

Abstract We use Nuclear Magnetic Resonance relaxometry (i.e. the frequency variation of the NMR relaxation rates) of quadrupolar nucleus ( Na) and H Pulsed Gradient Spin Echo NMR to determine the mobility of the counterions and the water molecules within aqueous dispersions of clays. The local ordering of isotropic dilute clay dispersions is investigated by NMR relaxometry. In contrast, the NMR spectra of the quadrupolar nucleus and the anisotropy of the water self-diffusion tensor clearly exhibit the occurrence of nematic ordering in dense aqueous dispersions. Multi-scale numerical models exploiting molecular orbital quantum calculations, Grand Canonical Monte Carlo simulations, Molecular and Brownian Dynamics are used to interpret the measured water mobility and the ionic quadrupolar relaxation measurements. [Pg.159]

The determinant (= total molecular wavefunction T) just described will lead to (remainder of Section 5.2) n occupied, and a number of unoccupied, component spatial molecular orbitals i//. These orbitals i// from the straightforward Slater determinant are called canonical (in mathematics the word means in simplest or standard form ) molecular orbitals. Since each occupied spatial ip can be thought of as a region of space which accommodates a pair of electrons, we might expect that when the shapes of these orbitals are displayed ( visualized Section 5.5.6) each one would look like a bond or a lone pair. However, this is often not the case for example, we do not find that one of the canonical MOs of water connects the O with one H, and another canonical MO connects the O with another H. Instead most of these MOs are spread over much of a molecule, i.e. delocalized (lone pairs, unlike conventional bonds, do tend to stand out). However, it is possible to combine the canonical MOs to get localized MOs which look like our conventional bonds and lone pairs. This is done by using the columns (or rows) of the Slater T to create a T with modified columns (or rows) if a column/row of a determinant is multiplied by k and added to another column/row, the determinant remains kD (Section 4.3.3). We see that if this is applied to the Slater determinant with k = 1, we will get a new determinant corresponding to exactly the same total wavefunction, i.e. to the same molecule, but built up from different component occupied MOs i//. The new T and the new i// s are no less or more correct than the previous ones, but by appropriate manipulation of the columns/rows the i// s can be made to correspond to our ideas of bonds and lone pairs. These localized MOs are sometimes useful. [Pg.184]


See other pages where Water molecule, canonical molecular orbitals is mentioned: [Pg.232]    [Pg.510]    [Pg.107]    [Pg.420]    [Pg.247]    [Pg.3201]    [Pg.526]    [Pg.477]   
See also in sourсe #XX -- [ Pg.5 , Pg.3201 ]




SEARCH



Canonical molecular orbitals

Molecular orbital molecules

Molecular orbitals molecules

Molecular orbitals water

Molecular orbitals water molecule

Molecular water

Molecules orbitals

Orbitals canonical

Water molecular orbital

Water molecule

Water molecule molecules

© 2024 chempedia.info