Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water as a component of AB cements

Water is also a component of set AB cements. In glass-ionomer cements, for example, it may serve to coordinate to certain sites around the metal ions. It also hydrates the siliceous hydrogel that is formed from the glass after add attack has liberated the various metal ions (Wilson McLean, 1988). Such reactions continue long after the initial hardening of the cement is complete, and for this reason water must be retained as far as possible during the first hours and days after formation of the cement. If water is lost from the cement and desiccation occurs, these post-hardening [Pg.48]

Water occurs in glass-ionomer and related cements in at least two different states (Wilson McLean, 1988 Prosser Wilson, 1979). These states have been classified as evaporable and non-evaporable, depending on whether the water can be removed by vacuum desiccation over silica gel or whether it remains firmly bound in the cement when subjected to such treatment (Wilson Crisp, 1975). The alternative descriptions loosely bound and tightly bound have also been applied to these different states of water combination. In the glass-poly(acrylic acid) system the evaporable water is up to 5 % by weight of the total cement, while the bound water is 18-28 % (Prosser Wilson, 1979). This amount of tightly bound water is equivalent to five or six molecules of water for each acid group and associated metal cation. Hence at least ten molecules of water are involved in the hydration of each coordinated metal ion at a carboxylate site. [Pg.49]

It has been suggested by Ikegami (1968) that the carboxylate groups of a polyacrylate chain are each surrounded by a primary local sphere of oriented water molecules, and that the polyacrylate chain itself is surrounded by a secondary sheath of water molecules. This secondary sheath is maintained as a result of the cooperative action of the charged functional groups on the backbone of the molecule. The monovalent ions Li , Na and are able to penetrate only this secondary hydration sheath, and thereby form a solvent-separated ion-pair, rather than a contact ion-pair. Divalent ions, such as Mg or Ba +, cause a much greater disruption to the secondary hydration sheath. [Pg.49]

The effectiveness with which divalent ions cause gelation of poly(acrylic add) has been found to follow the order Ba Sr Ca (Wall Drenan, 1951) and this has been attributed to the formation of salt-like crosslinks. Gelation has been assumed to arise in part from dehydration of the ion-pairs (Ikegami Imai, 1962), and certainly correlates with predpitation in fairly dilute systems. Indeed, the term precipitation has sometimes been applied to the setting of AB cements derived from poly(acrylic add) as they undergo the transition from soft manipulable paste to hard brittle solid. [Pg.49]

At the molecular level, a number of features are associated with the phenomenon of gelation or precipitation. In particular the disruption of the secondary hydration sheaths around the polyacrylate chains appears [Pg.49]


See other pages where Water as a component of AB cements is mentioned: [Pg.48]   


SEARCH



Water as a component

© 2024 chempedia.info