Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Warren-Averbach Fourier transformation

The first detailed X-ray diffraction (XRD) studies on PEMFC electrodes were performed by Wilson et al. [43] using a Warren-Averbach Fourier transformation method for determining the weighted crystallite sizes. Warren and Averbach s method takes into account not only the peak width but also the shape of the peak. This method is based on a Fourier deconvolution of the measured peaks and the instrument broadening to obtain the true diffraction profile. This method is capable of yielding both crystallite size distribution and lattice microstrain. The particle-size distributions can be determined from the actual shape of the difliaction peaks, with the use of Warren-Averbach analysis. [Pg.1052]

This property is readily established from the definition of Fourier transform and convolution. In scattering theory this theorem is the basis of methods for the separation of (particle) size from distortions (Stokes [27], Warren-Averbach [28,29] lattice distortion, Ruland [30-34] misorientation of anisotropic structural entities) of the scattering pattern. [Pg.43]

Fourier transform method. The method used most widely for the separation of size and distortion in peak profiles from metals and inorganic materials is the Fourier analysis method introduced by Warren and Averbach (21). The peak profile is considered as a convolution of the size-broadening profile fg and the distortion broadening profile fj), so that the resolved and corrected profile f(x) is given by... [Pg.175]


See other pages where Warren-Averbach Fourier transformation is mentioned: [Pg.121]    [Pg.121]    [Pg.134]    [Pg.125]    [Pg.217]    [Pg.110]   
See also in sourсe #XX -- [ Pg.121 ]




SEARCH



Warren-Averbach Fourier

© 2024 chempedia.info