Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

VSEPR model shell electron-pair repulsion

Once computed on a 3D grid from a given ab initio wave function, the ELF function can be partitioned into an intuitive chemical scheme [30], Indeed, core regions, denoted C(X), can be determined for any atom, as well as valence regions associated to lone pairs, denoted V(X), and to chemical bonds (V(X,Y)). These ELF regions, the so-called basins (denoted 2), match closely the domains of Gillespie s VSEPR (Valence Shell Electron Pair Repulsion) model. Details about the ELF function and its applications can be found in a recent review paper [31],... [Pg.146]

The VSEPR (Valence shell electron pair repulsion) Model... [Pg.28]

This chapter reviews molecular geometry and the two main theories of bonding. The model used to determine molecular geometry is the VSEPR (Valence Shell Electron Pair Repulsion) model. There are two theories of bonding the valence bond theory, which is based on VSEPR theory, and molecular orbital theory. A much greater amount of the chapter is based on valence bond theory, which uses hybridized orbitals, since this is the primary model addressed on the AP test. [Pg.127]

The Basic VSEPR (Valence-Shell Electron-Pair Repulsion) Model... [Pg.25]

Electron density maps based on theoretical calculations (methods in parentheses) are given in [22] (SCF-MO [23] also for the highest occupied MO 5ai), in [24] (SCF and Cl also for the three valence orbitals), in [10] (SCF-Xa-SW for the valence orbitals and the total valence shell), in [25] (SCF and SCGF [self-consistent group function]), and in [26] (united atom). The Laplacian V p of the charge density p showed four local concentrations of electronic charge in the valence shell of the central P atom in accordance with the VSEPR (valence shell electron pair repulsion) model [27] for this latter model and its application to PH3, see [28 to 31]. [Pg.142]

The tetrahedral geometry of methane is often explained with the valence shell electron pair repulsion (VSEPR) model The VSEPR model rests on the idea that an electron pair either a bonded pair or an unshared pair associated with a particular atom will be as far away from the atom s other electron pairs as possible Thus a tetrahedral geomehy permits the four bonds of methane to be maximally separated and is charac terized by H—C—H angles of 109 5° a value referred to as the tetrahedral angle... [Pg.29]

Valence shell electron pair repulsion (VSEPR) model (Section 110) Method for predicting the shape of a molecule based on the notion that electron pairs surrounding a central atom repel one another Four electron pairs will arrange them selves in a tetrahedral geometry three will assume a trigo nal planar geometry and two electron pairs will adopt a linear arrangement... [Pg.1296]

The major features of molecular geometry can be predicted on the basis of a quite simple principle—electron-pair repulsion. This principle is the essence of the valence-shell electron-pair repulsion (VSEPR) model, first suggested by N. V. Sidgwick and H. M. Powell in 1940. It was developed and expanded later by R. J. Gillespie and R. S. Nyholm. According to the VSEPR model, the valence electron pairs surrounding an atom repel one another. Consequently, the orbitals containing those electron pairs are oriented to be as far apart as possible. [Pg.175]

VSEPR model Valence Shell Electron Pair Repulsion model, used to predict molecular geometry states that electron pairs around a central atom tend to be as far apart as possible, 180-182... [Pg.699]

In some respects arenediazonium ions show analogies to acetylene. Acetylene has two deformation vibrations, v4 at 613.5 cm-1 and v6 at 729.6 cm-1, as shown in Figure 7-1 (Feldmann et al., 1956). The fact that the symmetrical vibration v4 has a lower frequency than v6 can be understood from BartelPs valence-shell electron-pair repulsion (VSEPR) model (1968) on the basis of a <pseudo-Jahn-Teller> effect. [Pg.156]

Two qualitative models have been successful in accounting for many of the structural changes in sulfoxides and sulfones5. One is the Faience Shell Electron Pair Repulsion (VSEPR) theory8, while the other approach involves considerations of nonbonded ligand/ligand interactions9. [Pg.35]

The Lewis structures encountered in Chapter 2 are two-dimensional representations of the links between atoms—their connectivity—and except in the simplest cases do not depict the arrangement of atoms in space. The valence-shell electron-pair repulsion model (VSEPR model) extends Lewis s theory of bonding to account for molecular shapes by adding rules that account for bond angles. The model starts from the idea that because electrons repel one another, the shapes of simple molecules correspond to arrangements in which pairs of bonding electrons lie as far apart as possible. Specifically ... [Pg.220]

Example the n = 2 shell of Period 2 atoms, valence-shell electron-pair repulsion model (VSEPR model) A model for predicting the shapes of molecules, using the fact that electron pairs repel one another. [Pg.970]

Having introduced methane and the tetrahedron, we now begin a systematic coverage of the VSEPR model and molecular shapes. The valence shell electron pair repulsion model assumes that electron-electron repulsion determines the arrangement of valence electrons around each inner atom. This is accomplished by positioning electron pairs as far apart as possible. Figure 9-12 shows the optimal arrangements for two electron pairs (linear),... [Pg.607]

The molecular geometry of a complex depends on the coordination number, which is the number of ligand atoms bonded to the metal. The most common coordination number is 6, and almost all metal complexes with coordination number 6 adopt octahedral geometry. This preferred geometry can be traced to the valence shell electron pair repulsion (VSEPR) model Introduced In Chapter 9. The ligands space themselves around the metal as far apart as possible, to minimize electron-electron repulsion. [Pg.1438]

The most widely used qualitative model for the explanation of the shapes of molecules is the Valence Shell Electron Pair Repulsion (VSEPR) model of Gillespie and Nyholm (25). The orbital correlation diagrams of Walsh (26) are also used for simple systems for which the qualitative form of the MOs may be deduced from symmetry considerations. Attempts have been made to prove that these two approaches are equivalent (27). But this is impossible since Walsh s Rules refer explicitly to (and only have meaning within) the MO model while the VSEPR method does not refer to (is not confined by) any explicitly-stated model of molecular electronic structure. Thus, any proof that the two approaches are equivalent can only prove, at best, that the two are equivalent at the MO level i.e. that Walsh s Rules are contained in the VSEPR model. Of course, the transformation to localised orbitals of an MO determinant provides a convenient picture of VSEPR rules but the VSEPR method itself depends not on the independent-particle model but on the possibility of separating the total electronic structure of a molecule into more or less autonomous electron pairs which interact as separate entities (28). The localised MO description is merely the simplest such separation the general case is our Eq. (6)... [Pg.78]


See other pages where VSEPR model shell electron-pair repulsion is mentioned: [Pg.39]    [Pg.85]    [Pg.39]    [Pg.661]    [Pg.85]    [Pg.662]    [Pg.532]    [Pg.50]    [Pg.178]    [Pg.2]    [Pg.25]    [Pg.43]    [Pg.365]    [Pg.249]    [Pg.100]    [Pg.15]    [Pg.73]    [Pg.99]    [Pg.219]    [Pg.178]    [Pg.66]   


SEARCH



Electron pair repulsion

Electron repulsion model

Electronic models

Electronic repulsion

Electronics pair repulsion

Electronics shells

Repulsive model

Shell model

Skill 1.3c-Predict molecular geometries using Lewis dot structures and hybridized atomic orbitals, e.g., valence shell electron pair repulsion model (VSEPR)

The Valence Shell Electron Pair Repulsion (VSEPR) model

VSEPR

VSEPR electron-pair repulsion

VSEPR model

VSEPR pair repulsion

VSEPR repulsion model

Valence Shell Electron-pair Repulsion VSEPR) model

© 2024 chempedia.info