Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vogel-Tammann-Hesse-Fulcher temperature-time dependence

A Vogel-Fulcher-Tammann-Hesse equation can be used to characterize the temperature dependence of the relaxation times for these six different degrees of cure, 0.70, 0.75, 0.80, 0.825, 0.90, and 0.95 ... [Pg.143]

It appears, however, that the mode-coupling theory is not able to explain some of the most significant slow-relaxation processes of these more complex glass formers. In particular, it cannot explain the success of the Vogel-Fulcher-Tammann-Hesse (VFTH) equation for the temperature-dependence of the relaxation time near the glass transition. The mode-coupling theory predicts instead a power-law dependence of the longest relaxation... [Pg.216]

In the a-process, the viscosity and consequently the relaxation time increase drastically as the temperature decreases. Thus, molecular dynamics is characterized by a wide distribution of relaxation times. A strong temperature dependence presenting departure from linearity or non-Arrhenius thermal activation is present, owing to the abrupt increase in relaxation time with the temperature decrease, thus developing a curvature near T. This dependence can be well described by the Vogel-Fulcher-Tammann-Hesse (VFTH) equation [40, 41], given by Equation 2.1 ... [Pg.17]

Fig. 19. Temperature dependence of the shift factors of the viscosity (T), terminal dispersion ( ), and softening dispersion (0) of app from Ref. 73. The temperature dependence of the local segmental relaxation time determined by dynamic light scattering ( ) (30) and by dynamic mechanical relaxation (o) (74). The two solid lines are separate fits to the terminal shift factor and local segmental relaxation by the Vogel-Fulcher-Tammann-Hesse equation. The uppermost dashed line is the global relaxation time tr, deduced from nmr relaxation data (75). The dashed curve in the middle is tr after a vertical shift indicated by the arrow to line up with the shift factor of viscosity (73). The lowest dashed curve is the local segmental relaxation time tgeg deduced from nmr relaxation data (75). Fig. 19. Temperature dependence of the shift factors of the viscosity (T), terminal dispersion ( ), and softening dispersion (0) of app from Ref. 73. The temperature dependence of the local segmental relaxation time determined by dynamic light scattering ( ) (30) and by dynamic mechanical relaxation (o) (74). The two solid lines are separate fits to the terminal shift factor and local segmental relaxation by the Vogel-Fulcher-Tammann-Hesse equation. The uppermost dashed line is the global relaxation time tr, deduced from nmr relaxation data (75). The dashed curve in the middle is tr after a vertical shift indicated by the arrow to line up with the shift factor of viscosity (73). The lowest dashed curve is the local segmental relaxation time tgeg deduced from nmr relaxation data (75).
Figure 6.5. Schematic of an Arrhenius plot for mechanisms commonly observed in polymers. The lines correspond to Arrhenius [Eq. (6.8) for y, p, and Maxwell-Wagner-Sillars (MWS) relaxations] and Vogel-Tammann-Fulcher-Hesse [VTFH Eq. (6.10)], for a and normal-mode (n-) relaxation] temperature dependences for the relaxation time t(T). Relaxations ascribed to small, highly mobile, dipolar units appear in the upper right side of the plot, while those originating from bulky dipolar segments, slowly moving ions, and MWS mechanisms are located in the lower-left part of the plot. Figure 6.5. Schematic of an Arrhenius plot for mechanisms commonly observed in polymers. The lines correspond to Arrhenius [Eq. (6.8) for y, p, and Maxwell-Wagner-Sillars (MWS) relaxations] and Vogel-Tammann-Fulcher-Hesse [VTFH Eq. (6.10)], for a and normal-mode (n-) relaxation] temperature dependences for the relaxation time t(T). Relaxations ascribed to small, highly mobile, dipolar units appear in the upper right side of the plot, while those originating from bulky dipolar segments, slowly moving ions, and MWS mechanisms are located in the lower-left part of the plot.
Segmental relaxation is a non-Arrhenius process having a time scale with a temperature dependence that follows the Vogel-Fulcher-Tammann-Hesse (VFTH) equation (27) ... [Pg.163]

The average a-relaxation time of polymers exhibit a dramatic sensitivity to temperature as Tg is approached. Figure 3.1b shows the temperature dependence of the average a-relaxation time as a function of inverse temperature normalized to Tg for an amorphous polymer. The temperature dependence of the average a-relaxation (or viscosity) can be well described by the Vogel-Fulcher-Tammann-Hesse (VFTH) equation [64-66]... [Pg.51]


See other pages where Vogel-Tammann-Hesse-Fulcher temperature-time dependence is mentioned: [Pg.421]    [Pg.121]    [Pg.140]    [Pg.194]    [Pg.499]    [Pg.518]    [Pg.10]    [Pg.561]    [Pg.236]   
See also in sourсe #XX -- [ Pg.121 , Pg.124 ]




SEARCH



Fulcher

Hessing

Temperature time-dependent

Time-temperature

Vogel

Vogel-Fulcher

Vogel-Fulcher temperature

Vogel-Fulcher-Tammann temperature

Vogel-Fulcher-Tammann-Hesse

© 2024 chempedia.info