Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscosity block copolymers

Styrenic block copolymers (SBCs) are also widely used in HMA and PSA appHcations. Most hot melt appHed pressure sensitive adhesives are based on triblock copolymers consisting of SIS or SBS combinations (S = styrene, I = isoprene B = butadiene). Pressure sensitive adhesives typically employ low styrene, high molecular weight SIS polymers while hot melt adhesives usually use higher styrene, lower molecular weight SBCs. Resins compatible with the mid-block of an SBC improves tack properties those compatible with the end blocks control melt viscosity and temperature performance. [Pg.358]

Depending on the concentration, the solvent, and the shear rate of measurement, concentrated polymer solutions may give wide ranges of viscosity and appear to be Newtonian or non-Newtonian. This is illustrated in Eigure 10, where solutions of a styrene—butadiene—styrene block copolymer are Newtonian and viscous at low shear rates, but become shear thinning at high shear rates, dropping to relatively low viscosities beyond 10 (42). The... [Pg.171]

Fig. 10. Viscosity vs shear rate for solutions of a styrene—butadiene—styrene block copolymer (42). A represents cyclohexanone, where c = 0.248 g/cm (9-xylene, where c = 0.246 g/cm C, toluene, where c = 0.248 g/cm. Courtesy of the Society of Plastics Engineers, Inc. Fig. 10. Viscosity vs shear rate for solutions of a styrene—butadiene—styrene block copolymer (42). A represents cyclohexanone, where c = 0.248 g/cm (9-xylene, where c = 0.246 g/cm C, toluene, where c = 0.248 g/cm. Courtesy of the Society of Plastics Engineers, Inc.
Among the techniques employed to estimate the average molecular weight distribution of polymers are end-group analysis, dilute solution viscosity, reduction in vapor pressure, ebuUiometry, cryoscopy, vapor pressure osmometry, fractionation, hplc, phase distribution chromatography, field flow fractionation, and gel-permeation chromatography (gpc). For routine analysis of SBR polymers, gpc is widely accepted. Table 1 lists a number of physical properties of SBR (random) compared to natural mbber, solution polybutadiene, and SB block copolymer. [Pg.493]

Block (Star) Arrangement. The known star polymers, like their linear counterparts, exhibit microphase separation. In general, they exhibit higher viscosities in the melt than their analogous linear materials. Their rheological behavior is reminiscent of network materials rather than linear block copolymers (58). Although they have been used as compatibiUzers in polymer blends, they are not as effective at property enhancements as linear diblocks... [Pg.184]

Blends with styrenic block copolymers improve the flexibiUty of bitumens and asphalts. The block copolymer content of these blends is usually less than 20% even as Httie as 3% can make significant differences to the properties of asphalt (qv). The block copolymers make the products more flexible, especially at low temperatures, and increase their softening point. They generally decrease the penetration and reduce the tendency to flow at high service temperatures and they also increase the stiffness, tensile strength, ductility, and elastic recovery of the final products. Melt viscosities at processing temperatures remain relatively low so the materials are still easy to apply. As the polymer concentration is increased to about 5%, an interconnected polymer network is formed. At this point the nature of the mixture changes from an asphalt modified by a polymer to a polymer extended with an asphalt. [Pg.19]

In three dimensions, Ohta and Kurokawa [32] reported that a BCC arrangement was only slightly more favored than the FCC arrangement. In fact, many BCC structures have been reported for AB type block copolymers and the blends of homopolymer-block copolymer systems [27,33-35]. However, the lattice structure of the core-shell type polymer microspheres was FCC. This FCC formation resulted in the lower viscosity of... [Pg.605]

The presence of flexible PEO and PPO blocks increases the viscosities of block copolymer solutions, this tendency is manifesting itself the stronger the greater is the PEO and PPO content in block copolymers. [Pg.132]

Microdomain stmcture is a consequence of microphase separation. It is associated with processability and performance of block copolymer as TPE, pressure sensitive adhesive, etc. The size of the domain decreases as temperature increases [184,185]. At processing temperature they are in a disordered state, melt viscosity becomes low with great advantage in processability. At service temperamre, they are in ordered state and the dispersed domain of plastic blocks acts as reinforcing filler for the matrix polymer [186]. This transition is a thermodynamic transition and is controlled by counterbalanced physical factors, e.g., energetics and entropy. [Pg.133]

PVA in, 25 617 setting speed of, 25 579-580 smectites application, 6 697t solution, 1 532-534 structural, 1 534-545 styrenic block copolymers in, 24 714 use of latex in, 14 711-712 vinyl acetate polymers in, 25 578-583 viscosity of, 25 581 water-borne, 25 475 Adhesive systems, microencapsules in, 16 460... [Pg.17]

Keywords. Dendrimers, Hyperbranched macromolecules. Block copolymers. Surface functionalization, Solvatochromism, Intrinsic viscosity... [Pg.113]

Initial intrinsic viscosity, dl/g Free polyfmethyl acrylate) Free polystyrene Block copolymer... [Pg.39]


See other pages where Viscosity block copolymers is mentioned: [Pg.85]    [Pg.85]    [Pg.347]    [Pg.346]    [Pg.13]    [Pg.479]    [Pg.482]    [Pg.482]    [Pg.483]    [Pg.483]    [Pg.716]    [Pg.723]    [Pg.452]    [Pg.601]    [Pg.637]    [Pg.127]    [Pg.128]    [Pg.141]    [Pg.141]    [Pg.159]    [Pg.174]    [Pg.196]    [Pg.447]    [Pg.89]    [Pg.229]    [Pg.138]    [Pg.79]    [Pg.1]    [Pg.296]    [Pg.7]    [Pg.110]    [Pg.60]    [Pg.254]    [Pg.188]    [Pg.75]    [Pg.77]    [Pg.45]   
See also in sourсe #XX -- [ Pg.265 ]




SEARCH



Viscosity copolymer

© 2024 chempedia.info