Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl halides palladium complexes

Palladium-catalyzed cross couplings of organofluorosilanes with vinyl [37] and aryl [38] halides and triflates are known, where the activation of the Si—C bond by fluoride ion plays an essential role in the coupling. The pentacoordinated fluoroorganic silanes promote the transmetallation to the aryl halide-palladium complexes strongly. At least one fluorine... [Pg.158]

The original Sonogashira reaction uses copper(l) iodide as a co-catalyst, which converts the alkyne in situ into a copper acetylide. In a subsequent transmeta-lation reaction, the copper is replaced by the palladium complex. The reaction mechanism, with respect to the catalytic cycle, largely corresponds to the Heck reaction.Besides the usual aryl and vinyl halides, i.e. bromides and iodides, trifluoromethanesulfonates (triflates) may be employed. The Sonogashira reaction is well-suited for the synthesis of unsymmetrical bis-2xy ethynes, e.g. 23, which can be prepared as outlined in the following scheme, in a one-pot reaction by applying the so-called sila-Sonogashira reaction ... [Pg.158]

Palladium complexes also catalyze the carbonylation of halides. Aryl (see 13-13), vinylic, benzylic, and allylic halides (especially iodides) can be converted to carboxylic esters with CO, an alcohol or alkoxide, and a palladium complex. Similar reactivity was reported with vinyl triflates. Use of an amine instead of the alcohol or alkoxide leads to an amide. Reaction with an amine, AJBN, CO, and a tetraalkyltin catalyst also leads to an amide. Similar reaction with an alcohol, under Xe irradiation, leads to the ester. Benzylic and allylic halides were converted to carboxylic acids electrocatalytically, with CO and a cobalt imine complex. Vinylic halides were similarly converted with CO and nickel cyanide, under phase-transfer conditions. ... [Pg.565]

Vinylic copper reagents react with CICN to give vinyl cyanides, though BrCN and ICN give the vinylic halide instead." Vinylic cyanides have also been prepared by the reaction between vinylic lithium compounds and phenyl cyanate PhOCN." Alkyl cyanides (RCN) have been prepared, in varying yields, by treatment of sodium trialkylcyanoborates with NaCN and lead tetraacetate." Vinyl bromides reacted with KCN, in the presence of a nickel complex and zinc metal to give the vinyl nitrile. Vinyl triflates react with LiCN, in the presence of a palladium catalyst, to give the vinyl nitrile." ... [Pg.802]

Palladium(II) is one of the most important transition metals in catalytic oxidations of allenes [1], Scheme 17.1 shows the most common reactions. Transformations involving oxidative addition of palladium(O) to aryl and vinyl halides do not afford an oxidized product and are discussed in previous chapters. The mechanistically very similar reactions, initiated by nucleophilic attack by bromide ion on a (jt-allene)pal-ladium(II) complex, do afford products with higher oxidation state and are discussed below. These reactions proceed via a fairly stable (jt-allyl)palladium intermediate. Mechanistically, the reaction involves three discrete steps (1) generation of the jt-allyl complex from allene, halide ion and palladium(II) [2] (2) occasional isomeriza-... [Pg.973]

The reaction of an allene with an aryl- or vinylpalladium(II) species is a widely used way of forming a Jt-allyl complex. Subsequent nucleophilic attack on this intermediate gives the product and palladium(O) (Scheme 17.1). Oxidative addition of palladium ) to an aryl or vinyl halide closes the catalytic cycle that does not involve an overall oxidation. a-Allenyl acids 27, however, react with palladium(II) instead of with palladium(O) to afford cr-vinylpalladium(II) intermediates 28 (Scheme 17.12). These cr-complexes than react with either an allenyl ketone [11] or with another alle-nyl acid [12] to form 4-(3 -furanyl)butenolides 30 or -dibutenolides 32, respectively. [Pg.981]

The palladium-catalyzed coupling of aiyl and vinyl halides to organotin compounds, known as Stille coupling, is one of the most important catalytic methods of carbon-carbon bond formation. The reaction is generally conducted in polar organic solvents, such as dimethylformamide, with tertiary phosphine complexes of palladium, although phosphine-free complexes or simple Pd-salts are also frequently used as catalysts [8]. [Pg.182]

Organozinc reagents, including the Reformatsky reagents, are extensively used in transition metal catalysed coupling reactions with aryl halides or triflates, vinyl halides, and allylic halides or acetates, as reviewed by Erdik156. Nickel and palladium complexes are... [Pg.833]


See other pages where Vinyl halides palladium complexes is mentioned: [Pg.154]    [Pg.584]    [Pg.121]    [Pg.537]    [Pg.540]    [Pg.563]    [Pg.578]    [Pg.930]    [Pg.370]    [Pg.371]    [Pg.388]    [Pg.54]    [Pg.439]    [Pg.446]    [Pg.469]    [Pg.168]    [Pg.185]    [Pg.154]    [Pg.158]    [Pg.1119]    [Pg.1120]    [Pg.454]    [Pg.484]   
See also in sourсe #XX -- [ Pg.842 , Pg.843 , Pg.844 , Pg.845 , Pg.846 , Pg.847 , Pg.848 , Pg.849 , Pg.850 , Pg.851 , Pg.852 , Pg.853 , Pg.854 , Pg.855 ]

See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Halide complexation

Halides complex

Palladium complexes halides

Palladium halides

Vinyl complexes

Vinyl halides

Vinyl halides palladium

Vinylic halides

© 2024 chempedia.info