Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vibrational spectroscopy function

In the chapter on vibrational spectroscopy (Chapter 6) 1 have expanded the discussions of inversion, ring-puckering and torsional vibrations, including some model potential functions. These types of vibration are very important in the determination of molecular structure. [Pg.468]

Before returning to the non-BO rate expression, it is important to note that, in this spectroscopy case, the perturbation (i.e., the photon s vector potential) appears explicitly only in the p.i f matrix element because this external field is purely an electronic operator. In contrast, in the non-BO case, the perturbation involves a product of momentum operators, one acting on the electronic wavefimction and the second acting on the vibration/rotation wavefunction because the non-BO perturbation involves an explicit exchange of momentum between the electrons and the nuclei. As a result, one has matrix elements of the form (P/ t)Xf > in the non-BO case where one finds lXf > in the spectroscopy case. A primary difference is that derivatives of the vibration/rotation functions appear in the former case (in (P/(J.)x ) where only X appears in the latter. [Pg.298]

Vibrational spectroscopy has played a very important role in the development of potential functions for molecular mechanics studies of proteins. Force constants which appear in the energy expressions are heavily parameterized from infrared and Raman studies of small model compounds. One approach to the interpretation of vibrational spectra for biopolymers has been a harmonic analysis whereby spectra are fit by geometry and/or force constant changes. There are a number of reasons for developing other approaches. The consistent force field (CFF) type potentials used in computer simulations are meant to model the motions of the atoms over a large ranee of conformations and, implicitly temperatures, without reparameterization. It is also desirable to develop a formalism for interpreting vibrational spectra which takes into account the variation in the conformations of the chromophore and surroundings which occur due to thermal motions. [Pg.92]

Bucko T, Hafner J, Benco L. 2005. Adsorption and vibrational spectroscopy of CO on mor-denite ab-initio density-functional study. J Phys Chem B 109 7345-7357. [Pg.88]

Li X, Gewirth AA. 2003. Peroxide electroreduction on Bi-modified An surfaces Vibrational spectroscopy and density functional calculations. J Am Chem Soc 125 7086-7099. [Pg.204]

The frequencies of absorption bands present gives diagnostic information on the nature of functional groups in materials as well as information from any observed frequency shifts on aspects such as hydrogen bonding and crystallinity. In many cases, spectra can be recorded non-destructively using either reflection or transmission procedures. IR spectra of small samples can also be obtained through microscopes (IR microspectrometry). Chalmers and Dent [8] discuss the theory and practice of IR spectroscopy in their book on industrial analysis with vibrational spectroscopy. Standard spectra of additives for polymeric materials include the major collection by Hummel and Scholl [9]. [Pg.568]

The next most useful is vibrational spectroscopy but identification of large molecules is still uncertain. In the laboratory, vibrational spectroscopy in the infrared (IR) is used routinely to identify the functional groups in organic molecules but although this is important information it is not sufficient to identify the molecule. Even in the fingerprint region where the low wavenumber floppy vibrational modes of big molecules are observed, this is hardly diagnostic of structure. On occasion, however, when the vibrational transition can be resolved rotationally then the analysis of the spectrum becomes more certain. [Pg.60]

Application of vibrational spectroscopy to the study of structure-function relationship in Langmuir-Blodgett films... [Pg.156]

In this section we give a simple and qualitative description of chemisorption in terms of molecular orbital theory. It should provide a feeling for why some atoms such as potassium or chlorine acquire positive or negative charge upon adsorption, while other atoms remain more or less neutral. We explain qualitatively why a molecule adsorbs associatively or dissociatively, and we discuss the role of the work function in dissociation. The text is meant to provide some elementary background for the chapters on photoemission, thermal desorption and vibrational spectroscopy. We avoid theoretical formulae and refer for thorough treatments of chemisorption to the literature [2,6-8],... [Pg.306]

The experiments using Sn adatoms are Intended to test for a correlation between the activity of these species as promoters for CO oxidation kinetics and their influence on the CO vibrational spectrum. Watanabe et. al. have proposed an "adatom oxidation" model for the catalytic activity of these adatoms (23). They propose that the function of the Sn adatoms is to catalyze the generation of adsorbed 0 or OH species at a lower potential than would be required on unpromoted Pt (23). The latter species then react with neighboring adsorbed CO molecules to accomplish the overall oxidation reaction. One implication of this proposed mechanism is that the adsorbed adatom is expected to have little, if any, direct interaction with the adsorbed CO reactant partner. Vibrational spectroscopy can be used to test for such an interaction. [Pg.372]

From a structural point of view the OPLS results for liquids have also shown to be in accord with available experimental data, including vibrational spectroscopy and diffraction data on, for Instance, formamide, dimethylformamide, methanol, ethanol, 1-propanol, 2-methyl-2-propanol, methane, ethane and neopentane. The hydrogen bonding in alcohols, thiols and amides is well represented by the OPLS potential functions. The average root-mean-square deviation from the X-ray structures of the crystals for four cyclic hexapeptides and a cyclic pentapeptide optimized with the OPLS/AMBER model, was only 0.17 A for the atomic positions and 3% for the unit cell volumes. [Pg.158]

As described above, it is probably adequately clear that the vibrational spectroscopy of water is complicated indeed One can simplify the situation considerably by considering dilute isotopic mixtures. Thus one common system is dilute HOD in D2O. The large frequency mismatch between OH and OD stretches now effectively decouples the OH stretch from all other vibrations in the problem, meaning that the OH stretch functions as an isolated chromophore. Of course the liquid is now primarily D2O instead of H2O, which has slightly different structural and dynamical properties, but that is a small price to pay for the substantial simplification this modification brings to the problem. [Pg.61]

How one obtains the three normal mode vibrational frequencies of the water molecule corresponding to the three vibrational degrees of freedom of the water molecule will be the subject of the following section. The H20 molecule has three normal vibrational frequencies which can be determined by vibrational spectroscopy. There are four force constants in the harmonic force field that are not known (see Equation 3.6). The values of four force constants cannot be determined from three observed frequencies. One needs additional information about the potential function in order to determine all four force constants. Here comes one of the first applications of isotope effects. If one has frequencies for both H20 and D20, one knows that these frequencies result from different atomic masses vibrating on the same potential function within the Born-Oppenheimer approximation. Thus, we... [Pg.59]

Vibrational spectroscopy, in the form of mid-IR, NIR and Raman spectroscopy has been featured extensively in industrial analyses, both quality control (QC), process monitoring applications and held-portable applications [1-6]. The latter has been aided by the need for advanced instrumentation for homeland security and related HazMat applications. Next to chromatography, it is the most widely purchased classihcation of instrumentation for these measurements and analyses. Spectroscopic methods in general are favored because they are relatively straightforward to apply and to implement, are rapid in terms of providing results, and are often more economical in terms of service, support and maintenance. Furthermore, a single spectrometer or spectral analyzer, in a near-line application, may serve many functions, whereas chromatographs (gas and liquid) tend to be dedicated to only a few methods at best. [Pg.160]


See other pages where Vibrational spectroscopy function is mentioned: [Pg.203]    [Pg.1125]    [Pg.275]    [Pg.354]    [Pg.106]    [Pg.165]    [Pg.123]    [Pg.124]    [Pg.134]    [Pg.17]    [Pg.240]    [Pg.59]    [Pg.150]    [Pg.267]    [Pg.156]    [Pg.267]    [Pg.597]    [Pg.40]    [Pg.69]    [Pg.79]    [Pg.74]    [Pg.381]    [Pg.249]    [Pg.126]    [Pg.129]    [Pg.770]    [Pg.358]    [Pg.122]    [Pg.277]    [Pg.140]    [Pg.102]    [Pg.47]    [Pg.31]    [Pg.304]   
See also in sourсe #XX -- [ Pg.98 ]




SEARCH



Spectroscopy functional

Vibration /vibrations spectroscopy

Vibrational function

© 2024 chempedia.info