Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vacancy coefficient

Haeany Solution Model The initial model (37) considered the adsorbed phase to be a mixture of adsorbed molecules and vacancies (a vacancy solution) and assumed that nonideaUties of the solution can be described by the two-parameter Wilson activity coefficient equation. Subsequendy, it was found that the use of the three-parameter Flory-Huggins activity coefficient equation provided improved prediction of binary isotherms (38). [Pg.274]

For an ion to move through the lattice, there must be an empty equivalent vacancy or interstitial site available, and it must possess sufficient energy to overcome the potential barrier between the two sites. Ionic conductivity, or the transport of charge by mobile ions, is a diffusion and activated process. From Fick s Law, J = —D dn/dx), for diffusion of a species in a concentration gradient, the diffusion coefficient D is given by... [Pg.351]

If samples of two metals widr polished faces are placed in contact then it is clear that atomic transport must occur in both directions until finally an alloy can be formed which has a composition showing die relative numbers of gram-atoms in each section. It is vety unlikely that the diffusion coefficients, of A in B and of B in A, will be equal. Therefore there will be formation of an increasingly substantial vacancy concentration in the metal in which diffusion occurs more rapidly. In fact, if chemically inert marker wires were placed at the original interface, they would be found to move progressively in the direction of slowest diffusion widr a parabolic relationship between the displacement distance and time. [Pg.177]

The diffusion coefficient corresponding to the measured values of /ch (D = kn/4nRn, is the reaction diameter, supposed to be equal to 2 A) equals 2.7 x 10 cm s at 4.2K and 1.9K. The self-diffusion in H2 crystals at 11-14 K is thermally activated with = 0.4 kcal/mol [Weinhaus and Meyer 1972]. At T < 11 K self-diffusion in the H2 crystal involves tunneling of a molecule from the lattice node to the vacancy, formation of the latter requiring 0.22 kcal/mol [Silvera 1980], so that the Arrhenius behavior is preserved. Were the mechanism of diffusion of the H atom the same, the diffusion coefficient at 1.9 K would be ten orders smaller than that at 4.2 K, while the measured values coincide. The diffusion coefficient of the D atoms in the D2 crystal is also the same for 1.9 and 4.2 K. It is 4 orders of magnitude smaller (3 x 10 cm /s) than the diffusion coefficient for H in H2 [Lee et al. 1987]. [Pg.112]

We denote by x the distance from the metal surface, and by n x) and rip x) the concentrations of cation vancancies and positive holes in the oxide. Let and Vp be their mobilities, and and Dp their diffusion coefficients. Let F x) be the electrostatic field in the oxide. J, the flux of cation vacancies (number crossing unit area per second), will be expressed by... [Pg.256]

When normal sites in a crystal structure are replaced by impurity atoms, or vacancies, or interstitial atoms, the local electronic structure is disturbed and local electronic states are introduced. Now when a dislocation kink moves into such a site, its energy changes, not by a minute amount but by some significant amount. The resistance to further motion is best described as an increase in the local viscosity coefficient, remembering that plastic deformation is time dependent. A viscosity coefficient, q relates a rate d8/dt with a stress, x ... [Pg.88]

When a crystal is heated, lattice members become more mobile. As a result, there can be removal of vacancies as they become filled by diffusion. Attractions to nearest neighbors are reestablished that result in a slight increase in density and the liberation of energy. There will be a disappearance of dislocated atoms or perhaps a redistribution of dislocations. These events are known to involve several types of mechanisms. However, the diffusion coefficient, D, is expressed as... [Pg.279]

Thus, contributions include accounting for adsorbent heterogeneity [Valenzuela et al., AIChE J., 34, 397 (1988)] and excluded pore-volume effects [Myers, in Rodrigues et al., gen. refs.]. Several activity coefficient models have been developed to account for nonideal adsorbate-adsorbate interactions including a spreading pressure-dependent activity coefficient model [e.g., Talu and Zwiebel, AIChE h 32> 1263 (1986)] and a vacancy solution theory [Suwanayuen and Danner, AIChE J., 26, 68, 76 (1980)]. [Pg.16]

At high temperatures there is experimental evidence that the Arrhenius plot for some metals is curved, indicating an increased rate of diffusion over that obtained by linear extrapolation of the lower temperature data. This effect is interpreted to indicate enhanced diffusion via divacancies, rather than single vacancy-atom exchange. The diffusion coefficient must now be represented by an Arrhenius equation in the form... [Pg.174]

The vacancy will follow a random-walk diffusion route, while the diffusion of the tracer by a vacancy diffusion mechanism will be constrained. When these processes are considered over many jumps, the mean square displacement of the tracer will be less than that of the vacancy, even though both have taken the same number of jumps. Therefore, it is expected that the observed diffusion coefficient of the tracer will be less than that of the vacancy. In these circumstances, the random-walk diffusion equations need to be modified for the tracer. This is done by ascribing a different probability to each of the various jumps that the tracer may make. The result is that the random-walk diffusion expression must be multiplied by a correlation factor, / which takes the diffusion mechanism into account. [Pg.229]

In both cases the diffusion coefficient of the ions using the vacancy population will be enhanced considerably. [Pg.240]


See other pages where Vacancy coefficient is mentioned: [Pg.2205]    [Pg.2414]    [Pg.643]    [Pg.644]    [Pg.645]    [Pg.285]    [Pg.361]    [Pg.1508]    [Pg.162]    [Pg.174]    [Pg.233]    [Pg.234]    [Pg.246]    [Pg.171]    [Pg.189]    [Pg.248]    [Pg.249]    [Pg.251]    [Pg.257]    [Pg.259]    [Pg.969]    [Pg.280]    [Pg.304]    [Pg.58]    [Pg.83]    [Pg.84]    [Pg.91]    [Pg.112]    [Pg.207]    [Pg.111]    [Pg.162]    [Pg.174]    [Pg.233]    [Pg.234]    [Pg.246]    [Pg.291]    [Pg.227]    [Pg.227]   
See also in sourсe #XX -- [ Pg.179 , Pg.182 , Pg.315 ]




SEARCH



Diffusion coefficient vacancy

© 2024 chempedia.info