Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Use of Translational Diffusion Coefficients

Following the general trend of looldng for a molecular description of the properties of matter, self-diffusion in liquids has become a key quantity for interpretation and modeling of transport in liquids [5]. Self-diffusion coefficients can be combined with other data, such as viscosities, electrical conductivities, densities, etc., in order to evaluate and improve solvodynamic models such as the Stokes-Einstein type [6-9]. From temperature-dependent measurements, activation energies can be calculated by the Arrhenius or the Vogel-Tamman-Fulcher equation (VTF), in order to evaluate models that treat the diffusion process similarly to diffusion in the solid state with jump or hole models [1, 2, 7]. [Pg.164]

From the molecular point of view, the self-diffusion coefficient is more important than the mutual diffusion coefficient, because the different self-diffusion coefficients give a more detailed description of the single chemical species than the mutual diffusion coefficient, which characterizes the system with only one coefficient. Owing to its cooperative nature, a theoretical description of mutual diffusion is expected to be more complex than one of self-diffusion [5]. Besides that, self-diffusion measurements are determinable in pure ionic liquids, while mutual diffusion measurements require mixtures of liquids. [Pg.164]

From the applications point of view, mutual diffusion is far more important than self-diffusion, because the transport of matter plays a major role in many physical and chemical processes, such as crystallization, distillation or extraction. Knowledge of mutual diffusion coefficients is hence valuable for modeling and scaling-up of these processes. [Pg.164]

The need to predict mutual diffusion coefficients from self-diffusion coefficients often arises, and many efforts have been made to understand and predict mutual diffusion data, through approaches such as, for example, the following extension of the Darken equation [5j  [Pg.164]

Systems that are near to ideality can be described satisfactorily with Equation 4.4-4, but the equation does not work very well in systems that are far from thermodynamic ideality, even if the self-diffusion coefficients and activities are known. Since systems with ionic liquids show strong intermolecular forces, there is a need [Pg.164]


See other pages where Use of Translational Diffusion Coefficients is mentioned: [Pg.164]    [Pg.164]   


SEARCH



Coefficient of diffusion

Diffusion, translational

Diffusivity translational

Translation coefficients

Translation diffusion

Translational coefficient

Translational diffusion coefficient

© 2024 chempedia.info