Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Uniaxial LLDPE, behavior

LDPE, and with polypropylene, PP, was studied In steady state shear, dynamic shear and uniaxial extenslonal fields. Interrelations between diverse rheological functions are discussed In terms of the linear viscoelastic behavior and Its modification by phase separation Into complex morphology. One of the more Important observations Is the difference In elongational flow behavior of LLDPE/PP blends from that of the other blends the strain hardening (Important for e.g. fllm blowing and wire coating) occurs In the latter ones but not In the former. [Pg.153]

The most Important commercial blends of PE are those of LLDPE with LDPE (25, 26). The capillary flow data n (012) and B 8(012), Indicated (similar to HDPE/LDPE) PDB-type behavior (27-29). The latter authors also reported a PDB relation between melt strength and composition. Kecently (14, 15) these blende were studied under the steady state and dynamic shear flow as well as in uniaxial extension. A more detailed review of these results will be given in part 3 of this chapter. Like HDPE/LDPE blends, those of LLDPE/LDPE type are also consistently reported as immiscible. [Pg.158]

A standard commercial film blowing LLDPE resin, LPX-30, was blended at different ratios with either other LLDPE s or a LDPE polymer. The characteristic properties of these materials are listed In Table II. The resins were generously donated to the project by Esso Chem., Canada. Prior to blending the polymers were thoroughly characterized by SEC, SEC/LALLS, solution viscosity, CNMR, Atomic Absorbance, and their rheological behavior was characterized In steady state and dynamic shear flow as well as In the uniaxial extenslonal deformation (44-46). [Pg.160]

The behavior of LLDPE blends at constant rate of stretching, e, was examined at 150°C. The results are shown In Fig. 13 for Series I and II as well as in Fig. 14 for Series III. The solid lines In Fig. 13 represent 3n calc values computed from the frequency relaxation spectrtmi by means of Equation (36), while triangles Indicate the measured in steady state 3n values at y = 10 2 (s ), I.e. the solid lines and the points represent the predicted and measured linear viscoelastic behavior respectively. The agreement Is satisfactory. The broken lines In Fig. 13 represent the experimental values of the stress growth function In uniaxial extension, nE 3he distance between the solid and broken lines Is a measure of nonlinearity of the system caused by strain hardening, SH. [Pg.176]

The extensional stress growth functions in shear and in uniaxial extension were measured for neat PP and linear low density PE, LLDPE, as well as for their blends. Good agreement between the two types of deformation was obtained indicating that linear viscoelastic behavior was obtained strain hardening was not observed [8]. [Pg.718]


See other pages where Uniaxial LLDPE, behavior is mentioned: [Pg.283]    [Pg.521]    [Pg.847]   
See also in sourсe #XX -- [ Pg.388 ]




SEARCH



Uniaxial

Uniaxiality

© 2024 chempedia.info