Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultraviolet photoemission spectroscop

N. Sato, H. Inokuchi, K. Seki, J. Aoki, and S. Iwashima, Ultraviolet Photoemission Spectroscopic Studies of Six Nanocyclic Aromatic Hydrocarbons in the Gaseous and Solid States, J. Chem. Soc. Faraday Trans. 2 78, 1929-1936 (1982) N. Sato, K. Seki, and H. Inokuchi, Polarization Energies of Organic Solids Determined by Ultraviolet Photoelectron Spectroscopy, J. Chem. Soc. Faraday Trans., 2 77, 1621-1633 (1981) N. Sato, K. Seki, and H. Inokuchi, Ultraviolet Photoelectron Spectra of Tetrahalo-P-Benzo-quinones and Hexahalobenzenes in the Solid State, J. Chem. Soc. Faraday Trans. 2 77, 47-54 (1981) I. Ikemoto, Y. Sato, T. Sugano, N. Kosugi, H. Kuroda, K. Ishii, N. Sato, K. Seki, and H. Inokuchi, Photoelectron Spectroscopy of the Molecule and Solid of 11,11,12,12-Tetracyanonaphthoquinodimethane (TNAP), Chem. Phys. Lett. 61, 50-53 (1979) K. Seki, S. Hashimoto, N. Sato, Y. Harada, K. Ishii, H. Inokuchi, and J. Kanbe, Vacuum-Ultraviolet Photoelectron Spectroscopy of Hexatricontane (N-C36-H74) Polycrystal A Model Compound of Polyethylene, J. Chem. Phys. 66, 3644-3649 (1977). [Pg.195]

Considering the valence levels, the synergistic effect of combining spectroscopic measurements with theoretical calculations is illustrated by two pairs of chapters (1) ultraviolet photoemission and optical absorption data compared to a spectroscopically parameterized CNDO/S3 model, and (2) x-ray photoemission compared to ab initio and intermediate approximation MO calculations. [Pg.449]

I will illustrate the application of two techniques to the study of problems involving latent-image silver. These techniques are molecular orbital calculations and ultraviolet photoemission spectroscopy (UPS). The calculations are used to model the processes of formation of silver particles through photolysis. The spectroscopic measurements are used to determine properties of the silver particle as a function of its size. [Pg.59]

The experimental papers cover the various spectroscopic techniques and a few deal with special materials. The introductory chapter (62) by Baer and Schneider presents an overview of this field and helps tie the various aspects together that are reviewed in detail in the remaining chapters of the volume. Photoemission studies (UPS - ultraviolet photoemission spectroscopy, and XPS - X-ray photoemission spectroscopy) on various materials are discussed by Campagna and Hillebrecht (chapter 63)- intermetallic compounds, by Lynch and Weaver (chapter 66)— cerium and its compounds, and by Hiifner (chapter 67) - chalcogenides. Other experimental techniques covered include BIS (bremsstrahlung isochromat spectroscopy) by Hillebrecht and Campagna (chapter 70), X-ray absorption and X-ray emission by Rohler (chapter 71) and inelastic electron scattering by Netzer and Matthew (chapter 72). [Pg.615]

Photoemission spectroscopy (PES) is by far the most widely used and powerful spectroscopic technique for interface research. XPS and UPS are complementary techniques that utilize different light sources, e.g., x-ray and ultraviolet, to excite electrons in solids via photoelectric effect and then collect the escaped photoelectrons with an energy analyzer. In general, photoemission experiments for interface formation studies are performed in the following way. The study begins with the photoemission analysis of a clean surface of the material that will eventually form one side of the... [Pg.187]

With the availability of intense tunable radiation in the range firom ultraviolet to hard X-rays from synchrotrons, powerful new experimental techniques have been developed to probe the structural and electronic properties of solids and surfaces. In particular, angle-resolved photoemission gives information about the electronic properties in the valence bands of solids while core level spectroscopy provides an element-specific spectroscopic tool. [Pg.1573]


See other pages where Ultraviolet photoemission spectroscop is mentioned: [Pg.743]    [Pg.743]    [Pg.391]    [Pg.100]    [Pg.185]    [Pg.450]    [Pg.391]    [Pg.469]    [Pg.300]    [Pg.78]   
See also in sourсe #XX -- [ Pg.68 , Pg.112 ]




SEARCH



Photoemission

Ultraviolet photoemission

© 2024 chempedia.info