Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Turbulent diffusion coefficient compound

Pheromone propagation by wind depends on the release rate of the pheromone (or any other odor) and air movements (turbulent dispersion). In wind, the turbulent diffusivity overwhelms the diffusion properties of a volatile compound or mixture itself. Diffusion properties are now properties of wind structure and boundary surfaces, and preferably termed dispersion coefficients. Two models have dominated the discussion of insect pheromone propagation. These are the time-average model (Sutton, 1953) and the Gaussian plume model. [Pg.10]

Many chemicals escape quite rapidly from the aqueous phase, with half-lives on the order of minutes to hours, whereas others may remain for such long periods that other chemical and physical mechanisms govern their ultimate fates. The factors that affect the rate of volatilization of a chemical from aqueous solution (or its uptake from the gas phase by water) are complex, including the concentration of the compound and its profile with depth, Henry s law constant and diffusion coefficient for the compound, mass transport coefficients for the chemical both in air and water, wind speed, turbulence of the water body, the presence of modifying substrates such as adsorbents in the solution, and the temperature of the water. Many of these data can be estimated by laboratory measurements (Thomas, 1990), but extrapolation to a natural situation is often less than fully successful. Equations for computing rate constants for volatilization have been developed by Liss and Slater (1974) and Mackay and Leinonen (1975), whereas the effects of natural and forced aeration on the volatilization of chemicals from ponds, lakes, and streams have been discussed by Thibodeaux (1979). [Pg.7]

It turns out that turbulent diffusion can be described with Fick s laws of diffusion that were introduced in the previous section, except that the molecular diffusion coefficient is to be replaced by an eddy or turbulent diffusivity E. In contrast to molecular diffusivities, eddy dififusivities are dependent only on the phase motion and are thus identical for the transport of different chemicals and even for the transport of heat. What part of the movement of a turbulent fluid is considered to contribute to mean advective motion and what is random fluctuation (and therefore interpreted as turbulent diffusion) depends on the spatial and temporal scale of the system under investigation. This implies that eddy diffusion coefficients are scale dependent, increasing with system size. Eddy diffusivities in the ocean and atmosphere are typically anisotropic, having much large values in the horizontal than in the vertical dimension. One reason is that the horizontal extension of these spheres is much larger than their vertical extension, which is limited to approximately 10 km. The density stratification of large water bodies further limits turbulence in the vertical dimension, as does a temperature inversion in the atmosphere. Eddy diffusivities in water bodies and the atmosphere can be empirically determined with the help of tracer compounds. These are naturally occurring or deliberately released compounds with well-estabhshed sources and sinks. Their concentrations are easily measured so that their dispersion can be observed readily. [Pg.253]


See other pages where Turbulent diffusion coefficient compound is mentioned: [Pg.102]    [Pg.1023]    [Pg.81]    [Pg.147]    [Pg.110]    [Pg.36]    [Pg.59]    [Pg.140]    [Pg.39]    [Pg.1042]    [Pg.545]   


SEARCH



Turbulence diffusivity

Turbulence turbulent diffusion

Turbulence turbulent diffusion coefficient

Turbulent coefficient

Turbulent diffusion

Turbulent diffusion coefficient

Turbulent diffusivity

© 2024 chempedia.info