Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Triple-zeta

A triple-zeta (TZ) basis in which tlnee times as many STOs or CGTOs are used as the number of core and valence AOs (and, yes, there now are quadniple-zeta (QZ) and higher-zeta basis sets appearing in the literature). [Pg.2171]

The next step in iin proving a basis set could be to go to triple zeta, quadruple zeta, etc. Ifone goes in this direction rather than adding functions of higher angular quantum number, the basis set would not be well balanced. With a large number of s and p functions only, one finds, for example, that the equilibrium geometry of am monia actually becomes planar. The next step beyond double z.ela n sit ally in voices addin g polarization fn n ciion s, i.e.. addin g d-... [Pg.260]

Double zeta valence or triple zeta valence calculations can be carried out by putting DZV or TZV in place of STO NGAUSS = 3 in the second line of the INPUT file in the GAMESS implementation. The calculated energies become progressively lower (better) for double and triple zeta basis sets... [Pg.318]

Plot the curve of the bond energy of H2 vs. intemuclear distance for the H2 molecule using the STO-3G, double zeta valence (DZV), and triple zeta valence (TZV) basis sets in the GAMESS implementation. [Pg.318]

An older, but still used, notation specihes how many contractions are present. For example, the acronym TZV stands for triple-zeta valence, meaning that there are three valence contractions, such as in a 6—311G basis. The acronyms SZ and DZ stand for single zeta and double zeta, respectively. A P in this notation indicates the use of polarization functions. Since this notation has been used for describing a number of basis sets, the name of the set creator is usually included in the basis set name (i.e., Ahlrichs VDZ). If the author s name is not included, either the Dunning-Hay set is implied or the set that came with the software package being used is implied. [Pg.82]

Roos augmented double- and triple-zeta ANO Available for Fl(8.v4/i) to i sAp id) through Zn(2Lvl5/il0r/6/) to (2Lvl5/il0r/6/4 ). [Pg.88]

Calculations at the 6-31G and 6-31G level provide, in many cases, quantitative results considerably superior to those at the lower STO-3G and 3-21G levels. Even these basis sets, however, have deficiencies that can only be remedied by going to triple zeta (6-31IG basis sets in HyperChem) or quadruple zeta, adding more than one set of polarization functions, adding f-type functions to heavy atoms and d-type functions to hydrogen, improving the basis function descriptions of inner shell electrons, etc. As technology improves, it will be possible to use more and more accurate basis sets. [Pg.262]

Even larger basis sets are now practical for many systems. Such basis sets add multiple polarization functions per atom to the triple zeta basis set. For example, the 6-31G(2d) basis set adds two d functions per heavy atom instead of just one, while the 6-311++G(3df,3pd) basis set contains three sets of valence region functions, diffuse functions on both heavy atoms and hydrogens, and multiple polarization functions 3 d functions and 1 f function on heavy atoms and 3 p functions and 1 d function on hydrogen atoms. Such basis sets are useful for describing the interactions between... [Pg.100]

The experimental bond length is 1.476. Both the triple zeta basis set and multiple polarization functions are needed to produce a very accurate structure for this molecule. [Pg.101]

Barone also introduces two new basis sets, EPR-Il and EPR-llI. These are optimized for the calculation of hyperfine coupling constants by density functional methods. EPR-Il is a double zeta basis set with a single set of polarization functions and an enhanced s part. EPR-III is a triple zeta set including diffuse functions, double d polarization functions and a single set off functions. [Pg.314]

The next step up in basis set size is a Triple Zeta (TZ). Such a basis contains three times as many functions as tire minimum basis, i.e. six s-functions and three p-functions for the first row elements. Some of the core orbitals may again be saved by only splitting the valence, producing a triple split valence basis set. Again the term TZ is used to cover both cases. The names Quadruple Zeta (QZ) and Quintuple Zeta (5Z, not QZ) for the next levels of basis sets are also used, but large sets are often given explicitly in terms of the number of basis functions of each type. [Pg.152]

From a basis set study at the CCSD level for the static hyperpolarizability we concluded in Ref. [45] that the d-aug-cc-pVQZ results for 7o is converged within 1 - 2% to the CCSD basis set limit. The small variations for the A, B and B coefficients between the two triple zeta basis sets and the d-aug-cc-pVQZ basis, listed in Table 4, indicate that also for the first dispersion coefficients the remaining basis set error in d-aug-cc-pVQZ basis is only of the order of 1 - 2%. This corroborates that the results for the frequency-dependent hyperpolarizabilities obtained in Ref. [45] by a combination of the static d-aug-cc-pVQZ hyperpolarizability with dispersion curves calculated using the smaller t-aug-cc-pVTZ basis set are close to the CCSD basis set limit. [Pg.135]

The starting point is our previously performed calculations [3] using the Huzinaga basis set [20] (9s) for Be and (4s) for H, triple-zeta contracted, supplemented by the three 2p orbitals proposed for Be by Ahlrichs and Taylor [21] with exponents equal to 1.2, 0.3 and 0.05 respectively. This initial basis set, noted I, includes one s-type bond-function the exponent of which is equal to 0.5647. Several sets of diffuse orbitals have then been added to this basis I. Their corresponding exponents were determined by downward extrapolation from the valence basis set, using the Raffenetti [22] and Ahlrichs [21] procedure. Three supplementary basis sets noted II, III and IV containing respectively one, two and three... [Pg.314]

The Veillard basis set [23] (1 ls,9p) has been used for A1 and Si, and the (1 ls,6p) basis of the same author has been retained for Mg. However, three p orbitals have been added to this last basis set, their exponents beeing calculated by downward extrapolation. The basis sets for Al, Si and Mg have been contracted in a triple-zeta type. For the hydrogen atom, the Dunning [24] triple-zeta basis set has been used. We have extended these basis sets by mean of a s-type bond function. We have optimized the exponents a and locations d of these eccentric polarization functions, and the internuclear distance R of each of the studied molecules. These optimized parameters are given in Table 3. [Pg.315]

Details of the extended triple zeta basis set used can be found in previous papers [7,8]. It contains 86 cartesian Gaussian functions with several d- and f-type polarisation functions and s,p diffuse functions. All cartesian components of the d- and f-type polarization functions were used. Cl wave functions were obtained with the MELDF suite of programs [9]. Second order perturbation theory was employed to select the most energetically double excitations, since these are typically too numerous to otherwise handle. All single excitations, which are known to be important for describing certain one-electron properties, were automatically included. Excitations were permitted among all electrons and the full range of virtuals. [Pg.320]

Stuttgart pseudopotential for Au with a uncontracted (lls/10p/7d/5f) valence basis set and a Dunning augmented correlation consistent valence triple-zeta sets (aug-cc-pVTZ) for both C and N, but with the most diffuse f function removed, was used. [Pg.210]

G(d,p), both intermediate and TS geometries become more reliable, at least as judged from a comparison with the corresponding geometries achieved using the augmented correlation-consistent polarized valence triple-zeta (aug-cc-pVTZ) basis sets.32... [Pg.39]

Schaefer, A. Huher, C. Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829-5835. [Pg.67]

In terms of basis sets, there is compelling evidence that sets smaller than polarized triple-zeta quality significantly reduce the accuracy that can be obtained with modem hybrid functionals and cannot be recommended if quantitative energetic results are the prime target. [Pg.163]


See other pages where Triple-zeta is mentioned: [Pg.262]    [Pg.90]    [Pg.91]    [Pg.317]    [Pg.319]    [Pg.260]    [Pg.102]    [Pg.297]    [Pg.302]    [Pg.154]    [Pg.5]    [Pg.135]    [Pg.24]    [Pg.124]    [Pg.313]    [Pg.317]    [Pg.411]    [Pg.80]    [Pg.139]    [Pg.140]    [Pg.144]    [Pg.144]    [Pg.151]    [Pg.159]    [Pg.159]    [Pg.161]    [Pg.163]    [Pg.178]   
See also in sourсe #XX -- [ Pg.260 ]

See also in sourсe #XX -- [ Pg.260 ]




SEARCH



Basis sets, diffuse triple-zeta

Double, Triple, Quadruple Zeta

Orbitals triple-zeta

Triple Zeta plus Double Polarization

Triple zeta basis set

Triple zeta contracted functions

Triple zeta double polarization

Triple zeta plus polarization basis set

Triple zeta valence basis sets

Triple-zeta plus polarization

Triple-zeta polarization functions

Valence triple-zeta basis plus polarization

© 2024 chempedia.info