Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trimethylsilyl reactivity

The same reactivity pattern is observed with i9-methy1 anilides in which a carhanion-stahili ing substituent is attached to the methyl group. For Z = trimethylsilyl or triphenylphosphonio, elimination occurs with cyclization. [Pg.87]

Me3SiNEt2- Trimethylsilyldiethylamine selectively silylates equatorial hydroxyl groups in quantitative yield (4-10 h, 25°). The report indicated no reaction at axial hydroxyl groups. In the prostaglandin series the order of reactivity of trimethylsilyldiethylamine is Cii > Ci5 C9 (no reaction). These trimethylsilyl ethers are readily hydrolyzed in aqueous methanol containing a trace of acetic acid. The reagent is also useful for the silylation of amino-acids. ... [Pg.69]

Me3SiI, CH2CI2, 25°, 15 min, 85-95% yield.Under these cleavage conditions i,3-dithiolanes, alkyl and trimethylsilyl enol ethers, and enol acetates are stable. 1,3-Dioxolanes give complex mixtures. Alcohols, epoxides, trityl, r-butyl, and benzyl ethers and esters are reactive. Most other ethers and esters, amines, amides, ketones, olefins, acetylenes, and halides are expected to be stable. [Pg.180]

Trimethylsilyl enol ethers can be used to protect ketones, but in general are not used for this purpose because they are reactive under both acidic and basic conditions. More highly hindered silyl enol ethers are much less susceptible to acid and base. A less hindered silyl enol can be hydrolyzed in the presence of a more hindered one. ... [Pg.222]

The addition of HCN to aldehydes or ketones produces cyanohydrins. This is an equilibrium reaction. For aldehydes and aliphatic ketones the equilibrium lies to the right therefore the reaction is quite feasible, except with sterically hindered ketones such as diisopropyl ketone. However, ketones ArCOR give poor yields, and the reaction cannot be carried out with ArCOAr since the equilibrium lies too far to the left. With aromatic aldehydes the benzoin condensation (16-54) competes. With oc,p-unsaturated aldehydes and ketones, 1,4 addition competes (15-33). Ketones of low reactivity, such as ArCOR, can be converted to cyanohydrins by treatment with diethylaluminum cyanide (Et2AlCN see OS VI, 307) or, indirectly, with cyanotrimethylsilane (MesSiCN) in the presence of a Lewis acid or base, followed by hydrolysis of the resulting O-trimethylsilyl cyanohydrin (52). The use of chiral additives in this latter reaction leads to cyanohydrins with good asymmetric... [Pg.1239]

The symmetrical bis(ylidyl)phosphenium chlorides 103, obtained from the reaction of trimethylsilyl ylides 102 with PCI3 are the first phosphenium salts which do not need counterions of low basicity such as AICI4 to be isolated (Scheme 30) [119]. The explanation of their stability lies in the delocalisation of the phosphenium charge in the two phosphonium parts. The reactivity study of these species is reported and for example the phosphenium 103 (R=Ph) adds ortho quinones to the central phosphorus to give the corresponding dioxaphospholenium salts 104 via a [4-1-1] cycloaddition. [Pg.65]

Thioethers 210 are smoothly formed upon cyclization of silyl nitronates 209, generated in situ from the nitro compounds 208, on treatment with N,0-bis(trimethylsilyl)acetamide (BSA, Scheme 24) [57]. Fluorodesilylation of 210 gave the AT-oxide 212, presumably via highly reactive aldehyde 211, which was reduced to the target compound actinidine 213 in an overall 27% yield. [Pg.30]

The mono-silylated or free acetamides, which are liberated during silylation with 22 a, can, furthermore, interfere with any subsequent reaction, e.g. with electrophiles. Thus in the one-pot/one-step silylation, Friedel-Crafts catalyzed, nucleoside synthesis starting from protected sugar derivatives and pyrimidine or purine bases, the mono- or bis-silylated amides such as 22 a can compete with less reactive silylated heterocycHc bases for the intermediate electrophilic sugar cation to form protected 1-acetylamino sugars in up to 49% yield [42, 47]. On silylation with trimethylsilylated urea 23 a the Hberated free urea is nearly insoluble in most solvents, for example CH2CI2, and thus rapidly precipitated [43]. [Pg.12]

Thus removal of water from classical rather inactive fluoride reagents such as tetrabutylammonium fluoride di- or trihydrate by silylation, e.g. in THF, is a prerequisite to the generation of such reactive benzyl, allyl, or trimethylsilyl anions. The complete or partial dehydration of tetrabutylammonium fluoride di- or trihydrate is especially simple in silylation-amination, silylation-cyanation, or analogous reactions in the presence of HMDS 2 or trimethylsilyl cyanide 18, which effect the simultaneous dehydration and activation of the employed hydrated fluoride reagent (cf, also, discussion of the dehydration of such fluoride salts in Section 13.1). For discussion and preparative applications of these and other anhydrous fluoride reagents, for example tetrabutylammonium triphenyldifluorosilicate or Zn(Bp4)2, see Section 12.4. Finally, the volatile trimethylsilyl fluoride 71 (b.p. 17 °C) will react with nucleophiles such as aqueous alkali to give trimethylsilanol 4, HMDSO 7, and alkali fluoride or with alkaline methanol to afford methoxytri-methylsilane 13 a and alkali fluoride. [Pg.21]

Because activated 4-0-trimethylsilylated-2, 3, 5 -0-acyluridines such as 3 are also obtained as reactive intermediates in the Friedel-Crafts-catalyzed silyl-Hilbert-Johnson reaction [59, 59 a] of persilylated uracils or 6-azauracils such as 227 with sugars such as l-0-acetyl-2,3,5-tri-0-benzoyl-/9-D-ribofuranose 228 in the presence of SnCl4, treatment of the reactive intermediate 229 with a large excess of pyrrolidine neutralizes the SnCLi. used and aminates 229 to afford the protected 6-aza-cytidine 230, although in 57% yield only [49, 59] (Scheme 4.20). [Pg.54]

With trimethylsilyl iodide 17 the 0,N-acetal 457 gives the iminium iodide as reactive intermediate this converts the enol silyl ether 107 a in situ into the Man-nich-base 669, in 81% yield, and hexamethyldisiloxane 7 [195]. On treatment of the 0,N-acetal 473 (or the N-silylated Schiff base 489) with TMSOTf 20 (or Zny, the intermediate iminium triflate adds to the ketene acetal 663 to give mefhoxytri-methylsilane 13 a and silylated / -amino esters such as 670, which are readily transsilylated by methanol to give the free / -aminoester [70, 196] (Scheme 5.61). [Pg.117]


See other pages where Trimethylsilyl reactivity is mentioned: [Pg.315]    [Pg.320]    [Pg.70]    [Pg.71]    [Pg.251]    [Pg.424]    [Pg.33]    [Pg.637]    [Pg.155]    [Pg.160]    [Pg.164]    [Pg.389]    [Pg.555]    [Pg.744]    [Pg.216]    [Pg.412]    [Pg.125]    [Pg.384]    [Pg.121]    [Pg.200]    [Pg.170]    [Pg.104]    [Pg.52]    [Pg.178]    [Pg.3]    [Pg.10]    [Pg.13]    [Pg.15]    [Pg.21]    [Pg.51]    [Pg.74]    [Pg.74]    [Pg.76]    [Pg.155]    [Pg.158]    [Pg.159]   
See also in sourсe #XX -- [ Pg.475 ]




SEARCH



© 2024 chempedia.info