Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Triflates reductive elimination reactions

Initially the Pd(0) complex oxidatively adds to enol triflate 6 to form a vinyl-Pd(II) species. Carbon monoxide then inserts into the new Pd—C o-bond to yield a palladium(ll)-acyl complex which captures methanol. The methanolysis step is formally a reductive elimination reaction in which the Pd(0) catalyst is regenerated to propagate the catalytic cycle (Scheme 6.8).7... [Pg.182]

In contrast, few examples of reductive elimination reactions that form the C-N bond in amines are known. Only in the past several years have complexes been isolated that undergo these reactions [49-54]. These reductive eliminations are the crucial C-N bond-forming step of the aryl halide and triflate amination chemistry discussed in this review. Information on how these reactions occur, and what types of complexes favor this process, has been crucial to the understanding and development of new amination catalysts [50],... [Pg.197]

Cyclization of a-propargyl-/3-ketoesters can be combined with cross-coupling of aryl halides or triflates in an oxypalladation-reductive elimination reaction to yield arylfurylmethanes (Equation 12) <2003X4661 >. [Pg.502]

An Q-arylalkanoate is prepared by the reaction of aryl halide or triflate with the ketene silyl acetal 74 as an alkene component. However, the reaction is explained by transmetallation of Ph - Pd—Br with 74 to generate the Pd eno-late 75, which gives the a-arylalkanoate by reductive elimination[76]. [Pg.139]

Hydrogenolysis of aryl and alkenyl halides and triflates proceeds by the treatment with various hydride sources. The reaction can be explained by the transmetallation with hydride to form palladium hydride, which undergoes reductive elimination. Several boro hydrides are used for this purpose[680], Deuteration of aromatic rings is possible by the reaction of aryl chlorides with NaBD4681]. [Pg.248]

Tandem cyclization/3-substitution can be achieved starting with o-(trifluoro-acetamido)phenylacetylenes. Cyclization and coupling with cycloalkenyl trif-lates can be done with Pd(PPh3)4 as the catalyst[9]. The Pd presumably cycles between the (0) and (II) oxidation levels by oxidative addition with the triflate and the reductive elimination which completes the 3-alkenylation. The N-protecting group is removed by solvolysis under the reaction conditions, 3-Aryl groups can also be introduced using aryl iodides[9]. [Pg.23]

Intramolecular arylation of G-H bonds gives cyclic aromatic compounds. In this intramolecular arylation, the carbon-palladium cr-bond is first formed by the oxidative addition of Pd(0) species and then the resulting electrophilic Pd(n) species undergoes the intramolecular G-H bond activation leading to the formation of the palladacycle, which finally affords the cyclic aromatic compounds via reductive elimination.87 For example, the fluoroanthene derivative is formed by the palladium-catalyzed reaction of the binaphthyl triflate, as shown in Scheme 8.88 This type of intramolecular arylation is applied to the construction of five- and six-membered carbocyclic and heterocyclic systems.89 89 89 ... [Pg.230]

On the other hand, the use of [Rh(CO)2Cl]2 as a catalyst results in ring opening of the siloxycyclopropanes 13 to the silyl enol ethers 14 with high stereoselectivity [10]. The 2-siloxyrhodacyclobutane 15a is proposed to undergo j8-elimination to give jr-allylrhodium 16a followed by reductive elimination to the silyl enol ether 14a. 1-Trimethylsiloxybicyclo[n.l.0]alkanes serve as / -metallo-carbonyl compounds via desilylation with a variety of transition metals [11]. The palladium-catalyzed reaction of the siloxycyclopropanes 17 under carbon monoxide in chloroform provides a route to the 4-keto pimelates 18. In the presence of aryl triflates, the 1,4-dicarbonyl compounds 19 are... [Pg.102]

The overall mechanism is closely related to that of the other cross-coupling methods. The aryl halide or triflate reacts with the Pd(0) catalyst by oxidative addition. The organoboron compound serves as the source of the second organic group by transmetala-tion. The disubstituted Pd(II) intermediate then undergoes reductive elimination. It appears that either the oxidative addition or the transmetalation can be rate-determining, depending on reaction conditions.134 With boronic acids as reactants, base catalysis is normally required and is believed to involve the formation of the more reactive boronate anion.135... [Pg.515]

Stille coupling was also developed in tlie early 1980s and is similar to Suzuki coupling in its sequence. It is used to couple aryl or vinyl halides or triflates with organotin compounds via oxidative addition, transmetallation, and reductive elimination. The oxidative addition reaction has tlie same requirements and preferences as discussed earlier for tlie Heck and Suzuki reactions. The reductive elimination results in formation of tlie new carbon-carbon bond. The main difference is that tlie transmetallation reaction uses an organotin compound and occurs readily without the need for an oxygen base. Aryl, alkenyl, and alkyl stannanes are readily available. Usually only one of tlie groups on tin enters into... [Pg.254]

Fig. 16.1. Presumed elementary steps of a C,C coupling between a Gilman cuprate and an alkenyl or aryl triflate (X = 03S—CF3), bromide (X = Br), or iodide (X = I). The four elementary steps of the reaction, discussed in the text, are (1) complexation, (2) oxidative addition of the substrate to the metal, (3) reductive elimination, and (4) dissociation of the w-bound ligand. Fig. 16.1. Presumed elementary steps of a C,C coupling between a Gilman cuprate and an alkenyl or aryl triflate (X = 03S—CF3), bromide (X = Br), or iodide (X = I). The four elementary steps of the reaction, discussed in the text, are (1) complexation, (2) oxidative addition of the substrate to the metal, (3) reductive elimination, and (4) dissociation of the w-bound ligand.

See other pages where Triflates reductive elimination reactions is mentioned: [Pg.227]    [Pg.238]    [Pg.111]    [Pg.231]    [Pg.732]    [Pg.89]    [Pg.109]    [Pg.4]    [Pg.316]    [Pg.310]    [Pg.378]    [Pg.263]    [Pg.126]    [Pg.395]    [Pg.401]    [Pg.413]    [Pg.28]    [Pg.157]    [Pg.13]    [Pg.169]    [Pg.178]    [Pg.94]    [Pg.9]    [Pg.9]    [Pg.41]    [Pg.692]    [Pg.693]    [Pg.704]    [Pg.710]    [Pg.195]    [Pg.197]    [Pg.1268]    [Pg.521]    [Pg.525]   


SEARCH



Elimination reactions reductive

Triflate elimination

Triflates elimination reactions

Triflates reactions

© 2024 chempedia.info