Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.2.4- Triazine-4-oxides, reaction with reactions

The reaction of triazine oxides 73 with acetone cyanohydrin yields triazine carbo-nitriles 74 (X = CN). Reacting 73 with potassium cyanide in alcohols results in the isolation of alkoxy products 74 (X = OR) which are also formed by treating the nitriles with alcohols <97MC66>. [Pg.286]

Furalazine, Acetylfuratrizine, Panfuran-S. Heating nitrovin in butanol or dimethylformamide at 100—130°C affords furalazine, 6-[2-(5-nitro-2-furanyl)ethenyl]-l,2,4-triazine-3-amine (34). An improved synthesis originates with 5-nitro-2-furancarboxaldehyde and acetone, proceeds through 4-(5-nitro-2-furanyl)-3-buten-2-one followed by a selenium dioxide oxidation to the pymvaldehyde hydrate, and subsequent reaction with aininoguariidine (35). Furalazine, acetylfuratrizine (36), and the A[-A/-bis(hydroxymethyl) derivative, Panfuran-S, formed from the parent compound and formaldehyde (37), are systemic antibacterial agents. [Pg.461]

Works on the oxidation of uric acid has unequivocally established the triazine structure > ° (9) of oxonic acid. This is further confirmed by the straightforward synthesis described by Piskala and Gut. ° The reaction of biuret (11) with potassium ethyloxalate yielded a potassium salt (24), that with ethyl oxamate, the amide of oxonic acid (25). Both these compounds were converted to 5-azauracil. An analogous reaction with diethyloxalate which should produce an ester of oxonic acid resulted in a mixture of urethane and parabanic acid, however. [Pg.200]

Derivatives of 3-oxo-l,2,4-triazine 1-oxide undergo alkylation with various alkylating agents. Thus the reaction of 3-methoxy-l,2,4-triazine 1-oxide 20 with 2,3,5-tii-(9-benzoyl-/3-D-ribofuranosyl bromide, followed by the removal of the benzoyl protection with sodium methoxide, leads to an abnormal nucleoside 4-(/3-D-iibofuranosyl)-l,2,4-triazin-3(4//)-one 1-oxide 21 (73JOC3277). [Pg.269]

The reaction of the sodium salts of pyrido[2,3-e]-l,2,4-triazin-3(4//)-one 1-oxide 22 (Y = N) or l,2,4-benzotriazin-3(4//)-one 1-oxide 23 with acetobro-moglucose results in tetra-(9-acetyl derivatives of /3-D-glucopyranosides 24, 25 deacetylation of 25 gives nucleosides 26 (82JHC497). [Pg.269]

Reactions of 3-hydrazino-l,2,4-triazine 1-oxide 31 or 3-hydrazinopyrido [2,3-c]-l,2,4-triazine 1-oxide 32 with diethoxymethyl acetate or triethyl orthoformate proceed as cyclization reactions at the N(4) atom and the amino group to form the corresponding pyrazolo[3,4-c]-l,2,4-triazine 6-oxides 33 and 34 (74MI, 80JOC5421, 80MI). [Pg.270]

The methoxy group is replaced in the reaction of 3-methoxy-5-phenyl-1,2,4-triazine 1-oxide 46 with ammonia, resulting in 3-amino-5-phenyl-1,2,4-triazine 1-oxide 47. The treatment of 3-methoxy-1,2,4-triazine 1-oxide 20 with hydrazine leads to 3-hydrazino-1,2,4-triazine 1-oxide 48 (71JOC787). [Pg.273]

The reaction of 1,2,4-triazine 4-oxides 55 with CH-active 1,3-diketones (dime-done, indanedione, iV.iV -dimethylbarbituric acid) in the presence of trifluoroacetic acid (substrate activation by protonation) or KOH (activation of the nucleophile) leads to stable cr -adducts 63, whose oxidative aromatization by the action of KMn04 results in 5-substituted 1,2,4-triazine 4-oxides 64 (98MI). [Pg.277]

The reaction of 3-methoxy-1,2,4-triazine 1-oxide 20 with the carbanion generated from chloromethyl phenyl sulfone proceeds as the vicarious nucleophilic substitution (VNS) of hydrogen (Scheme 1, path B) via addition of the carbanion at position 5 of the heterocycle. Following base-induced elimination of HCl and protonation, 3-methoxy-5-phenylsulfonyl-1,2,4-triazine 4-oxides 65 result (88LA627). [Pg.277]

At the same time, the reaction of 1,2,4-triazine 4-oxides 55 with the anion of chloromethyl phenyl sulfone affords 5-(l-chloro-l-phenylmethyl)-l,2,4-triazines 66. In this case, autoaromatization of the a -adducts proceeds by the deoxygenative... [Pg.277]

It was found that 1,2,4-triazine 4-oxides 55 are active enough to react with cyanamide under basic conditions according to the deoxygenative mechanism to form 5-cyanamino-l,2,4-triazines 73 (00TZV1128). This reaction seems to be facilitated by the easy aromatization of cr -adducts by the Elcb elimination of water. [Pg.279]

The reaction of 3,6-diphenyl-1,2,4-triazine 4-oxide 58 with benzoylacetone under basic conditions affords substituted 1,2,4-triazine 74 in low yield (96MC116). [Pg.279]

Deoxygenative autoaromatization was reported to occur in the reaction of 3-amino-1,2,4-triazine 2-oxides 42 with alcohols in the presence of HCl or acetyl chloride. In this case the intermediate cr -adducts undergo elimination of water or acetic acid, resulting in 6-alkoxy-3-amino-l,2,4-triazines 75 (77JOC3498). 1,2,4-Triazine 1-oxides do not react with alcohols under these conditions (77JOC3498). [Pg.280]

Chloro(bromo)-3-amino-l,2,4-tiiazines 76 were obtained by the reaction of the 3-amino-1,2,4-triazine 2-oxides 42 with HCl or HBr (78JOC2514). [Pg.280]

The reaction of 1,2,4-triazine 4-oxides 55 with water in the presence of benzoyl chloride affords 3-hydroxy-1,2,4-triazines 78. The mechanism suggested for this reaction includes acylation of the substrate at the oxygen of the iV-oxide group, followed by the addition of water to the 1,2,4-tiiazinium cation and the autoaromatization of the (T -adducts with the elimination of benzoic acid. [Pg.280]

The reaction of 1,2,4-triazine 4-oxides 55 with thiophenols proceeds in the same manner, resulting in the corresponding 5-arylmercapto-1,2,4-triazines 80 in high yields. Thiophenols in this case react as S-nucleophiles, in spite of the relative phenols—the C-nucleophiles (01RCB1068). [Pg.281]

Another pathway for the aromatization of the cr -adducts was found in the reactions of 3-pyrrolidino-l,2,4-triazine 4-oxide 81 with amines. Thus the treatment of 1,2,4-triazine 4-oxide 81 with ammonia leads to 5-amino-1,2,4-triazine 4-oxides 54—products of the telesubstitution reaction. In this case the cr -adduct 82 formed by the addition of ammonia at position 5 of the heterocycle undergoes a [l,5]sigmatropic shift resulting in 3,4-dihydro-1,2,4-triazine 83, which loses a molecule of pyrrolidine to yield the product 54. This mechanism was supported by the isolation of the key intermediates for the first time in such reactions—the products of the sigmatropic shift in the open-chain tautomeric form of tiiazahexa-triene 84. The structure of the latter was established by NMR spectroscopy and X-ray analysis. In spite of its open-chain character, 84 can be easily aromatized by refluxing in ethanol to form the same product 54 (99TL6099). [Pg.282]

Similarly, ring opening was found in reactions of 6-aryl-1,2,4-triazine 4-oxides 53 with aliphatic amines, yielding open-chain 6-amino-1-hydroxy- 1,4,5-triazahex-atrienes 85. In this case, however, the nucleophile adds to the 3 position of the... [Pg.282]


See other pages where 1.2.4- Triazine-4-oxides, reaction with reactions is mentioned: [Pg.376]    [Pg.271]    [Pg.271]    [Pg.272]    [Pg.273]    [Pg.275]    [Pg.276]    [Pg.284]    [Pg.285]   
See also in sourсe #XX -- [ Pg.84 ]




SEARCH



1.2.4- Triazine-2-oxides, reaction with

1.2.4- Triazine-2-oxides, reaction with

1.2.4- Triazines reactions

3- Bromo-1,2,4-triazine 2-oxide, reaction with

3- Bromo-l,2,4-triazine 2-oxide, reaction with alkoxides

3-Amino-l,2,4-triazine 2-oxide, oxidation reaction with HCI

3-Amino-l,2,4-triazine 2-oxide, oxidation reaction with alcohols

3.6- Diphenyl-l,2,4-triazine 4-oxide, reaction with indole

6-Aryl-1,2,4-triazine 4-oxide, reaction with

6-Aryl-1,2,4-triazine 4-oxide, reaction with amines

Reactions with triazines

© 2024 chempedia.info