Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition states opening

A completely different rationale for the stereochemical outcome of aldol additions relies on open-transition-state models. These involve anti-periplanar orientation of enolate and carbonyl group, in contrast with their syn-clinal conformation assumed in the six-membered cyclic transition states. Open-transition-state structures have been proposed to offer a rationale for those aldol additions that give predominantly syn products, irrespective of enolate geometry [90]. This outcome has been observed in aldol reactions of tin and zirconium enoiates and of naked enoiates generated from enolsilanes by treatment with tris(diethylamino)sulfonium difluoro-methylsiliconate [70]. As shown in Scheme 1.12, the driving force for the... [Pg.22]

Figure A3.12.9. Comparison of the unimolecular dissociation rates for HO2—>H+02 as obtained from the quantum mechanical resonances open circles) and from variational transition state RRKM step... Figure A3.12.9. Comparison of the unimolecular dissociation rates for HO2—>H+02 as obtained from the quantum mechanical resonances open circles) and from variational transition state RRKM step...
Detailed analyses of the above experiments suggest that the apparent steps in k E) may not arise from quantized transition state energy levels [110.111]. Transition state models used to interpret the ketene and acetaldehyde dissociation experiments are not consistent with the results of high-level ab initio calculations [110.111]. The steps observed for NO2 dissociation may originate from the opening of electronically excited dissociation chaimels [107.108]. It is also of interest that RRKM-like steps in k E) are not found from detailed quantum dynamical calculations of unimolecular dissociation [91.101.102.112]. More studies are needed of unimolecular reactions near tln-eshold to detennine whether tiiere are actual quantized transition states and steps in k E) and, if not, what is the origin of the apparent steps in the above measurements of k E). [Pg.1035]

Noyori "Open" Transition State for non-Chelation Control Aldols... [Pg.82]

Non-chelation aldol reactions proceed via an "open" transition state to give syn aldols regardless of enolate geometry. [Pg.82]

Lewis acid promoted condensation of silyl ketene acetals (ester enolate equiv.) with aldehydes proceeds via "open" transition state to give anti aldols starting from either E- or Z- enolates. [Pg.86]

This program is excellent for high-accuracy and sophisticated ah initio calculations. It is ideal for technically difficult problems, such as electronic excited states, open-shell systems, transition metals, and relativistic corrections. It is a good program if the user is willing to learn to use the more sophisticated ah initio techniques. [Pg.339]

Two approaches to convergent steroid syntheses are based on the thermal opening of benzocyclobutenes to the o-quinodimethane derivatives (see p. 80 W. Oppolzer, 1978 A) and their stereoselective intramolecular Diels-Alder cyclizations. T, Kametani (1977 B, 1978) obtained (+ )-estradiol in a six-step synthesis. The final Diels-Alder reaction occurred regio- and stereoselectively in almost quantitative yield, presumably because the exo transition state given below is highly favored over the endo state in which rings A and D would stcrically inter-... [Pg.280]

This suggests that as water attacks the bromonium ion positive charge develops on the carbon from which the bromine departs The transition state has some of the character of a carbocation We know that more substituted carbocations are more stable than less substituted ones therefore when the bromonium ion ring opens it does so by breaking the bond between bromine and the more substituted carbon... [Pg.260]

The sp hybridized carbon of an acyl chloride is less sterically hindered than the sp hybridized carbon of an alkyl chloride making an acyl chloride more open toward nude ophilic attack Also unlike the 8 2 transition state or a carbocation intermediate m an Stvfl reaction the tetrahedral intermediate m nucleophilic acyl substitution has a stable arrangement of bonds and can be formed via a lower energy transition state... [Pg.841]

Compound (122) is also obtained by decarboxylative ring-opening of l,2-benzisoxazole-3-carboxylic acid. It has also been concluded that the reaction involves an intermediateless, concerted loss of carbon dioxide via a transition state in which the negative charge is spread over the carboxyl group and the isox azole ring. [Pg.31]

The advantage of starting with a ring of -1 members lies in the nature of the rearrangements, which proceed through cyclic transition states, so that the system never becomes open-chain — the carbon-carbon bond is broken only while the carbon-heteroatom bond is being made. [Pg.34]

Alkyl groups under nonacidic conditions sterically deflect nucleophiles from C, but under acidic conditions this steric effect is to some extent offset by an electronic one the protonated oxirane opens by transition states (Scheme 40) which are even more 5Nl-like than the borderline Sn2 one of the unprotonated oxirane. Thus electronic factors favor cleavage at the more substituted carbon, which can better support a partial positive charge the steric factor is still operative, however, and even under acidic conditions the major product usually results from Cp attack. [Pg.108]

These results indicate an energy profile for the 3-methyl-2-butyl cation to 2-methyl-2-butyl cation rearrangement in which the open secondary cations are transition states, rather than intermediates, with the secondary cations represented as methyl-bridged species (comer-protonated cyclopropanes) (Fig. 5.10). [Pg.321]

An interpretation of activation parameters has led to the conclusion that the bromination transition state resembles a three-membered ring, even in the case of alkenes that eventually react via open carbocation intermediates. It was foimd that for cis trans pairs of alkenes tiie difference in enthalpy at the transition state for bromination was greater than the enthalpy difference for the isomeric alkenes, as shown in Fig. 6.2. This... [Pg.363]

Regioselectivity in opening of a-functionalized epoxides by treatment with trimethylamine dihydrofluoride has been observed. Thus, cw-isophorol epoxide gives exclusively 3-fluoro-l,2-diol, whereas from the trans isomer, 2-fluoro-l,3-diol is obtained as the main product together with 3-methylenecyclohexane-l,2-diol. This behavior has been discussed m terms of the influence of a-substituents on the transition state conformations [7 J] (equations 11 and 12). [Pg.203]

Flash vacuum thermolysis (FVT) of 2-substituted 4//-pyrido[l,2-n]pyrimidin-4-ones 126 above 800 °C afforded (2-pyridyl)iminopropadie-none (130) (99JCS(P2)1087). These reactions were interpreted in terms of reversible ring opening of 4//-pyrido[l,2-n]pyrimidin-4-ones to imidoyl-ketenes 127. A 1,5-H shift in 127 generated the N(l)H-tautomeric methylene ketene 128, in which facile elimination of HX took place via a six-membered cyclic transition state 129 to yield 130. In the case of 2-methoxy derivative 126 (X = OMe) another competing pathway was also identified at lower temperature, which resulted in the formation C3O2 and 2-methylaminopyr-idine via mesoionic isomer 131 (Scheme 9). The products were identified by IR spectroscopy. [Pg.202]

The results are critically dependent on the level of theory. However, a stepwise mechanism with closed shell structures along the reaction path was found to be lower in energy than a concerted reaction. An all-cw conformer of 172 is reported to be a transition state rather than an intermediate. Similarities of the conformational isomers of the intermediate 2-butenedithial 172 with the dinitrosoethylenes discussed in Section IV,c are evident. 3,6-Diamino-substituted dithiins are predicted to be more stable in the open-chain bisthioamide structure [95JST51]. The... [Pg.71]


See other pages where Transition states opening is mentioned: [Pg.473]    [Pg.381]    [Pg.1405]    [Pg.465]    [Pg.151]    [Pg.473]    [Pg.381]    [Pg.1405]    [Pg.465]    [Pg.151]    [Pg.116]    [Pg.106]    [Pg.681]    [Pg.681]    [Pg.29]    [Pg.38]    [Pg.57]    [Pg.68]    [Pg.84]    [Pg.168]    [Pg.422]    [Pg.611]    [Pg.432]    [Pg.923]    [Pg.681]    [Pg.681]    [Pg.63]    [Pg.328]    [Pg.185]    [Pg.276]    [Pg.93]    [Pg.30]    [Pg.36]   
See also in sourсe #XX -- [ Pg.238 ]




SEARCH



Open transition

Open transition state

© 2024 chempedia.info