Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transitions solvent effects

For analysing equilibrium solvent effects on reaction rates it is connnon to use the thennodynamic fomuilation of TST and to relate observed solvent-mduced changes in the rate coefficient to variations in Gibbs free-energy differences between solvated reactant and transition states with respect to some reference state. Starting from the simple one-dimensional expression for the TST rate coefficient of a unimolecular reaction a— r... [Pg.833]

If reliable quantum mechanical calcnlations of reactant and transition state stnictures in vacnnm are feasible, treating electrostatic solvent effects on the basis of SRCF-PCM rising cavity shapes derived from methods... [Pg.838]

Abraham M H 1974 Solvent effects on transition states and reaction rates Prog. Rhys. Org. Ohem. 11 1-87... [Pg.864]

Ladanyi B M and Hynes J T 1986 Transition state solvent effects on atom transfer rates in solution J. Am. Ohem. Soc. 108 585-93... [Pg.864]

The intensities are plotted vs. v, the final vibrational quantum number of the transition. The CSP results (which for this property are almost identical with CI-CSP) are compared with experimental results for h in a low-temperature Ar matrix. The agreement is excellent. Also shown is the comparison with gas-phase, isolated I. The solvent effect on the Raman intensities is clearly very large and qualitative. These show that CSP calculations for short timescales can be extremely useful, although for later times the method breaks down, and CTCSP should be used. [Pg.374]

For condensed species, additional broadening mechanisms from local field inhomogeneities come into play. Short-range intermolecular interactions, including solute-solvent effects in solutions, and matrix, lattice, and phonon effects in soHds, can broaden molecular transitions significantly. [Pg.312]

It is interesting that the molecular structure in the transition state is also subject to a solvent effect. Compared to the gas phase, the solute molecular geometry at the transition state shifts toward the reactant side in aqueous solution the C—N and C—Cl distances... [Pg.433]

It should always be home in mind that solvent effects can modify the energy of both tile reactants and the transition slate. It is the difference in the two solvation effects that is the basis for changes in activation energies and reaction rates. Ihus, although it is conimon to express solvent effects solely in terms of reactant solvation or transition-slate solvation,... [Pg.242]

In fee absence of fee solvation typical of protic solvents, fee relative nucleophilicity of anions changes. Hard nucleophiles increase in reactivity more than do soft nucleophiles. As a result, fee relative reactivity order changes. In methanol, for example, fee relative reactivity order is N3 > 1 > CN > Br > CP, whereas in DMSO fee order becomes CN > N3 > CP > Br > P. In mefeanol, fee reactivity order is dominated by solvent effects, and fee more weakly solvated N3 and P ions are fee most reactive nucleophiles. The iodide ion is large and very polarizable. The anionic charge on fee azide ion is dispersed by delocalization. When fee effect of solvation is diminished in DMSO, other factors become more important. These include fee strength of fee bond being formed, which would account for fee reversed order of fee halides in fee two series. There is also evidence fiiat S( 2 transition states are better solvated in protic dipolar solvents than in protic solvents. [Pg.294]

We will discuss shortly the most important structure-reactivity features of the E2, El, and Elcb mechanisms. The variable transition state theoiy allows discussion of reactions proceeding through transition states of intermediate character in terms of the limiting mechanistic types. The most important structural features to be considered in such a discussion are (1) the nature of the leaving group, (2) the nature of the base, (3) electronic and steric effects of substituents in the reactant molecule, and (4) solvent effects. [Pg.379]

The observed solvent effect can be expressed quantitatively with the aid of the Leffler-Grunwald operator 5m introduced in Chapter 7. For rate constant k measured in medium M we have, from transition state theory, k = (kT//i)exp ( —AGm// T) and similarly for rate constant ko measured in a reference solvent. Combining these two expressions gives... [Pg.386]

Separation of Initial and Transition State Solvent Effects... [Pg.418]

Polyhalogenated solvents all stabilize the initial state (relative to DMF), but have varied effects on the transition state. [Note particularly No. 28, tetrachlo-roethane, which shows no net solvent effect relative to DMF, yet profoundly... [Pg.423]

After an introductory chapter, phenomenological kinetics is treated in Chapters 2, 3, and 4. The theory of chemical kinetics, in the form most applicable to solution studies, is described in Chapter 5 and is used in subsequent chapters. The treatments of mechanistic interpretations of the transition state theory, structure-reactivity relationships, and solvent effects are more extensive than is usual in an introductory textbook. The book could serve as the basis of a one-semester course, and I hope that it also may be found useful for self-instruction. [Pg.487]

The reactions of enamines as 1,3-dipolarophiles provide the most extensive examples of applications to heterocyclic syntheses. Thus the addition of aryl azides to a large number of cyclic (596-598) and acyclic (599-602) enamines has led to aminotriazolines which could be converted to triazoles with acid. Particular attention has been given to the direction of azide addition (601,603). While the observed products suggest a transition state in which the development of charges gives greater directional control than steric factors, kinetic data and solvent effects (604-606) speak against zwitterionic intermediates and support the usual 1,3-dipolar addition mechanism. [Pg.440]

Solvent effects also depend on the ground-state structure of the substrate and on the transition-state structure, as is shown below. Here let us merely note that A-heterocyclic compounds tend to form a hydrogen bond with hydroxylic solvents even in the ground state. Hydrogen-bond formation in this case is a change in the direction of quaternization of the aza group, as demonstrated by spectral evidence. Therefore, it is undoubtedly a rate-enhancing interaction. [Pg.308]

In a combined experimental/computational study, the vibrational spectra of the N9H and N7H tautomers of the parent purine have been investigated [99SA(A) 2329]. Solvent effects were estimated by SCRF calculations. Vertical transitions, transition dipole moments, and permanent dipole moments of several low-lying valence states of 2-aminopurine 146 were computed using the CIS and CASSCF methods [98JPC(A)526, 00JPC(A)1930]. While the first excited state of adenine is characterized by an n n transition, it is the transition for 146. The... [Pg.61]


See other pages where Transitions solvent effects is mentioned: [Pg.421]    [Pg.421]    [Pg.830]    [Pg.893]    [Pg.2593]    [Pg.2593]    [Pg.70]    [Pg.596]    [Pg.155]    [Pg.341]    [Pg.18]    [Pg.613]    [Pg.229]    [Pg.6]    [Pg.37]    [Pg.64]    [Pg.266]    [Pg.368]    [Pg.632]    [Pg.387]    [Pg.408]    [Pg.410]    [Pg.418]    [Pg.419]    [Pg.422]    [Pg.424]    [Pg.439]    [Pg.326]    [Pg.20]    [Pg.152]   
See also in sourсe #XX -- [ Pg.133 ]

See also in sourсe #XX -- [ Pg.133 ]




SEARCH



Transition effects

© 2024 chempedia.info