Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metals thermal reactivities

Schmidt reaction of ketones, 7, 530 from thienylnitrenes, 4, 820 tautomers, 7, 492 thermal reactions, 7, 503 transition metal complexes reactivity, 7, 28 tungsten complexes, 7, 523 UV spectra, 7, 501 X-ray analysis, 7, 494 1 H-Azepines conformation, 7, 492 cycloaddition reactions, 7, 520, 522 dimerization, 7, 508 H NMR, 7, 495 isomerization, 7, 519 metal complexes, 7, 512 photoaddition reactions with oxygen, 7, 523 protonation, 7, 509 ring contractions, 7, 506 sigmatropic rearrangements, 7, 506 stability, 7, 492 N-substituted mass spectra, 7, 501 rearrangements, 7, 504 synthesis, 7, 536-537... [Pg.524]

Transition metal centered bond activation reactions for obvious reasons require metal complexes ML, with an electron count below 18 ("electronic unsaturation") and with at least one open coordination site. Reactive 16-electron intermediates are often formed in situ by some form of (thermal, photochemical, electrochemical, etc.) ligand dissociation process, allowing a potential substrate to enter the coordination sphere and to become subject to a metal mediated transformation. The term "bond activation" as often here simply refers to an oxidative addition of a C-X bond to the metal atom as displayed for I and 2 in Scheme 1. [Pg.232]

In 1981, the first report on the sonochemistry of discrete organometallic complexes demonstrated the effect of ultrasound on iron carbonyls in alkane solutions (174). The transition metal carbonyls were chosen for these initial studies because their thermal and photochemical reactivities have been well characterized. The comparison among the thermal, photochemical, and sonochemical reactions of Fe(CO)5 provides an excellent example of the unique chemistry which homogeneous cavitation can... [Pg.95]

The highly strained nature of methylene- and alkylidenecyclopropanes has been evidenced by spectroscopic measurements and X-ray analysis. The presence of the exocyclic double bond imposes a lengthening of the C(2)-C(3) bond as a result of an increase of the C(2)-C(l)-C(3) angle (compared to cyclopropane). This structural feature is reflected in a typical reactivity of these compounds which is a thermal or transition metal catalysed [3 + 2] cycloaddition with alkenes. This chemistry, usually referred to as TMM chemistry , has been the object of many studies and thoroughly reviewed by Binger and Buch [2] and Trost [8]. [Pg.11]

The hydrogen-bonding interactions within the complexes W2CI4-(y-OR)2(OR)2(ROH)2 and V Cli y-OR)2(ORT)2(Rf0H)2 may provide the molecular analogues with which to model the structure and reactivities of transition metal oxide catalysts that possess surface hydroxyl groups. The thermal treatment which is often carried out in the pretreatment of metal oxides (leading to the loss of -OH... [Pg.261]

The Alder-ene reaction has traditionally been performed under thermal conditions—generally at temperatures in excess of 200 °C. Transition metal catalysis not only maintains the attractive atom-economical feature of the Alder-ene reaction, but also allows for regiocontrol and, in many cases, stereoselectivity. A multitude of transition metal complexes has shown the ability to catalyze the intramolecular Alder-ene reaction. Each possesses a unique reactivity that is reflected in the diversity of carbocyclic and heterocyclic products accessible via the transition metal-catalyzed intramolecular Alder-ene reaction. Presumably for these reasons, investigation of the thermal Alder-ene reaction seems to have stopped almost completely. For example, more than 40 papers pertaining to the transition metal-catalyzed intramolecular Alder-ene reaction have been published over the last decade. In the process of writing this review, we encountered only three recent examples of the thermal intramolecular Alder-ene reaction, two of which were applications to the synthesis of biologically relevant compounds (see Section 10.12.6). [Pg.568]

Thus, for every transition metal CVD precursor, its vapour pressure, its thermal behaviour, which means its reactivity at a given temperature with regard to the substrate and/or to any additional reagent, and its toxicity should be carefully examined. The ultimate objective is for the chemist to finely tune the rates of nucleation and growth of the deposit, for any given apphcation. [Pg.148]


See other pages where Transition metals thermal reactivities is mentioned: [Pg.48]    [Pg.142]    [Pg.4]    [Pg.187]    [Pg.442]    [Pg.208]    [Pg.474]    [Pg.205]    [Pg.128]    [Pg.41]    [Pg.28]    [Pg.222]    [Pg.37]    [Pg.173]    [Pg.239]    [Pg.276]    [Pg.251]    [Pg.422]    [Pg.21]    [Pg.460]    [Pg.89]    [Pg.379]    [Pg.646]    [Pg.142]    [Pg.273]    [Pg.378]    [Pg.54]    [Pg.4]    [Pg.142]    [Pg.198]    [Pg.164]    [Pg.178]    [Pg.185]    [Pg.185]    [Pg.139]    [Pg.179]    [Pg.237]    [Pg.387]    [Pg.489]   
See also in sourсe #XX -- [ Pg.366 , Pg.367 , Pg.368 , Pg.369 , Pg.370 , Pg.371 , Pg.372 , Pg.373 ]




SEARCH



Metal thermal reactivities

Metals reactivity

Thermalized transitions

Transition metal reactivity

Transition reactive

Transition reactivity

© 2024 chempedia.info