Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transfer atmospheric pressure

Transfer the reaction mixture to a Claisen flask and distil vmder atmospheric pressure imtil the temperature reaches 135-140° (3). Distil the residue under diminished pressure and coUeot the benzyl chloride at 64—69°/12 mm. The latter upon redistillation boils largely at 63- 65°/12 mm. The yield of benzyl chloride is about 100 g. [Pg.539]

Chlorodiphenyl. Diazotise 32 g. of o-chloroaniline (Section IV,34) in the presence of 40 ml. of concentrated hydrochloric acid and 22 -5 ml. of water in the usual manner (compare Section IV,61) with concentrated sodium nitrite solution. Transfer the cold, filtered diazonium solution to a 1 5 htre bolt-head flask surrounded by ice water, introduce 500 ml. of cold benzene, stir vigorously, and add a solution of 80 g. of sodium acetate trihydrate in 200 ml. of water dropwise, maintaining the temperature at 5-10°. Continue the stirring for 48 hours after the first 3 hours, allow the reaction to proceed at room temperature. Separate the benzene layer, wash it with water, and remove the benzene by distillation at atmospheric pressure distil the residue under reduced pressure and collect the 2-chlorodiphenyl at 150-155°/10 mm. The yield is 18 g. Recrystalliae from aqueous ethanol m.p. 34°. [Pg.928]

Ions produced in the plasma must be transferred to a mass analyzer. The flame is very hot and at atmospheric pressure, but the mass analyzer is at room temperature and under vacuum. To effect transfer of ions from the plasma to the analyzer, the interface must be as efficient as possible if ion yields from the plasma are to be maintained in the analyzer. [Pg.95]

Another big advance in the appHcation of ms in biotechnology was the development of atmospheric pressure ionization (API) techniques. There are three variants of API sources, a heated nebulizer plus a corona discharge for ionization (APCl) (51), electrospray (ESI) (52), and ion spray (53). In the APCl interface, the Ic eluent is converted into droplets by pneumatic nebulization, and then a sheath gas sweeps the droplets through a heated tube that vaporizes the solvent and analyte. The corona discharge ionizes solvent molecules, which protonate the analyte. Ions transfer into the mass spectrometer through a transfer line which is cryopumped, to keep a reasonable source pressure. [Pg.547]

Polymerization in Hquid monomer was pioneered by RexaH Dmg and Chemical and Phillips Petroleum (United States). In the RexaH process, Hquid propylene is polymerized in a stirred reactor to form a polymer slurry. This suspension is transferred to a cyclone to separate the polymer from gaseous monomer under atmospheric pressure. The gaseous monomer is then compressed, condensed, and recycled to the polymerizer (123). In the Phillips process, polymerization occurs in loop reactors, increasing the ratio of available heat-transfer surface to reactor volume (124). In both of these processes, high catalyst residues necessitate post-reactor treatment of the polymer. [Pg.414]

Evaporation and Distillation. Steam is used to supply heat to most evaporation (qv) and distillation (qv) processes, such as ia sugar-juice processiag and alcohol distillation. In evaporation, pure solvent is removed and a low volatiUty solute is concentrated. Distillation transfers lower boiling components from the Hquid to the vapor phase. The vapors are then condensed to recover the desired components. In steam distillation, the steam is admitted iato direct coatact with the solutioa to be evaporated and the flow of steam to the condenser is used to transport distillates of low volatiHty. In evaporation of concentrated solutions, there may be substantial boiling poiat elevation. For example, the boiling poiat of an 80% NaOH solution at atmospheric pressure is 226°C. [Pg.369]

Work in connection with desahnation of seawater has shown that specially modified surfaces can have a profound effect on heat-transfer coefficients in evaporators. Figure 11-26 (Alexander and Hoffman, Oak Ridge National Laboratory TM-2203) compares overall coefficients for some of these surfaces when boiling fresh water in 0.051-m (2-in) tubes 2.44-m (8-ft) long at atmospheric pressure in both upflow and downflow. The area basis used was the nominal outside area. Tube 20 was a smooth 0.0016-m- (0.062-in-) wall aluminum brass tube that had accumulated about 6 years of fouhng in seawater service and exhibited a fouling resistance of about (2.6)(10 ) (m s K)/ J [0.00015 (fF -h-°F)/Btu]. Tube 23 was a clean aluminum tube with 20 spiral corrugations of 0.0032-m (lA-in) radius on a 0.254-m (10 -in)... [Pg.1046]

Example 6 Solvent Rate for Absorption Let us consider the absorption of acetone from air at atmospheric pressure into a stream of pure water fed to the top of a packed absorber at 25 C. The inlet gas at 35 C contains 2 percent by volume of acetone and is 70 percent saturated with water vapor (4 percent H2O by volume). The mole-fraction acetone in the exit gas is to be reduced to 1/400 of the inlet value, or 50 ppmv. For 100 kmol of feed-gas mixture, how many Idlomoles of fresh water should be fed to provide a positive-driving force throughout the pacldug How many transfer units will be needed according to the classical adiabatic method What is the estimated height of pacldug required if Hqq = 0.70 m ... [Pg.1360]

Bromine (128 g., 0.80 mole) is added dropwise to the well-stirred mixture over a period of 40 minutes (Note 4). After all the bromine has been added, the molten mixture is stirred at 80-85° on a steam bath for 1 hour, or until it solidifies if that happens first (Note 5). The complex is added in portions to a well-stirred mixture of 1.3 1. of cracked ice and 100 ml. of concentrated hydrochloric acid in a 2-1. beaker (Note 6). Part of the cold aqueous layer is added to the reaction flask to decompose whatever part of the reaction mixture remains there, and the resulting mixture is added to the beaker. The dark oil that settles out is extracted from the mixture with four 150-ml. portions of ether. The extracts are combined, washed consecutively with 100 ml. of water and 100 ml. of 5% aqueous sodium bicarbonate solution, dried with anhydrous sodium sulfate, and transferred to a short-necked distillation flask. The ether is removed by distillation at atmospheric pressure, and crude 3-bromo-acetophenone is stripped from a few grams of heavy dark residue by distillation at reduced pressure. The colorless distillate is carefully fractionated in a column 20 cm. long and 1.5 cm. in diameter that is filled with Carborundum or Heli-Pak filling. 4 hc combined middle fractions of constant refractive index are taken as 3-l)romoaccto])lu iu)nc weight, 94 -100 g. (70-75%) l).p. 75 76°/0.5 mm. tif 1.57,38 1.5742 m.]). 7 8° (Notes 7 and 8). [Pg.8]


See other pages where Transfer atmospheric pressure is mentioned: [Pg.315]    [Pg.131]    [Pg.252]    [Pg.337]    [Pg.495]    [Pg.540]    [Pg.604]    [Pg.631]    [Pg.735]    [Pg.837]    [Pg.875]    [Pg.73]    [Pg.279]    [Pg.281]    [Pg.16]    [Pg.360]    [Pg.547]    [Pg.319]    [Pg.378]    [Pg.419]    [Pg.464]    [Pg.518]    [Pg.527]    [Pg.505]    [Pg.1092]    [Pg.1191]    [Pg.1219]    [Pg.1574]    [Pg.1652]    [Pg.15]    [Pg.51]    [Pg.66]    [Pg.448]    [Pg.484]    [Pg.77]    [Pg.284]    [Pg.147]    [Pg.148]    [Pg.206]    [Pg.217]   
See also in sourсe #XX -- [ Pg.13 , Pg.23 , Pg.24 , Pg.25 ]




SEARCH



Pressure transfer

Transfer atmospheric chamber pressures

© 2024 chempedia.info