Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Topological electron density analysis

Most of the relevant features of the charge density distribution can be elegantly elucidated by means of the topological analysis of the total electron density [43] nevertheless, electron density deformation maps are still a very effective tool in charge density studies. This is especially true for all densities that are not specified via a multipole model and whose topological analysis has to be performed from numerical values on a grid. [Pg.18]

Iversen, B.B., Larsen, F.K., Figgis, B.N. and Reynolds, P.A. (1997) X-N study ofthe electron density distribution in tra s-tetraammine-dinitronickel(II) at 9K transition metal bonding and topological analysis, J. Chem. Soc., Dalton Trans. 2227-2240. [Pg.35]

Leherte, L., Fortier, S., Glasgow, J. and Allen, F.H. (1994) Molecular scene analysis application of a topological approach to the automated interpretation of protein electron-density maps, Acta Cryst., D50, 155-166 and references therein. [Pg.136]

For over a decade, the topological analysis of the ELF has been extensively used for the analysis of chemical bonding and chemical reactivity. Indeed, the Lewis pair concept can be interpreted using the Pauli Exclusion Principle which introduces an effective repulsion between same spin electrons in the wavefunction. Consequently, bonds and lone pairs correspond to area of space where the electron density generated by valence electrons is associated to a weak Pauli repulsion. Such a property was noticed by Becke and Edgecombe [28] who proposed an expression of ELF based on the laplacian of conditional probability of finding one electron of spin a at t2, knowing that another reference same spin electron is present at ri. Such a function... [Pg.145]

An important part of AIM is the analysis of the electron density using the branch of mathematics called topology. Topology is the study of geometrical properties and spatial relations... [Pg.144]

The preceding analysis of the topology of the electron density in a molecule enables us to to define both the atoms and the bonds in a molecule. [Pg.151]

In the following chapter we show how the topology of an important function of p, the Laplacian, enables us to obtain additional information from the analysis of the electron density distribution. [Pg.161]

The connectivity is not known for the seven-helix bundle of purple membrane protein (Henderson and Unwin, 1975), but on the basis of its resemblance to other antiparallel a proteins the most likely topologies would be either up-and-down or Greek key (see below). An analysis based on the sequence and the relative electron-densities of the helices (Engelman et ah, 1980) considers a left-handed up-and-down topology as the most probable model. [Pg.285]

Such analysis sufficiently supplements with topological analysis of the electron density proposed earlier by Bader, where the condition... [Pg.112]

The modem state of EDSA in combination with topological analysis of the ESP and electron density allows to obtain reliable and quantitative information about chemical bonding and properties. [Pg.119]

Bond critical points represent extremes of electronic density. For this reason, these points are located in space where the gradient vector V p vanishes. Then the two gradient paths, each of which starts at the bond critical point and ends at a nucleus, will be the atomic interaction line. When all the forces on all the nuclei vanish, the atomic interaction line represents a bond path. In practice, this line connects two nuclei which can consequently be called bonded [5]. In terms of topological analysis of the electron density, these critical points and paths of maximum electron density (atomic interaction lines) yield a molecular graph, which is a good representation of the bonding interactions. [Pg.8]

TABLE 2.1. Geometrical Parameters, Bonding Energies, and Topological Analysis of Electronic Density in the Framework of AIM Theory"... [Pg.10]

Figures 5.20 illustrates the equilibrium and transition-state structures obtained for these complexes. As shown, the L1H-H20 complex in equilibrium state 1 shows an intramolecular dihydrogen bond with a very short H- H distance of 1.580 A calculated at the MP2/6-311++G(2d,2p) level. The topological analysis of the electron density on the H- H direction has resulted in the small pc and positive V pc values (0.0388 and 0.0453 an, respectively) typical of dihydrogen bonding. In contrast, no dihydrogen bonding was observed in the LiH-H2S molecule (3), where the corresponding hydrogen atoms are strongly remote. Figures 5.20 illustrates the equilibrium and transition-state structures obtained for these complexes. As shown, the L1H-H20 complex in equilibrium state 1 shows an intramolecular dihydrogen bond with a very short H- H distance of 1.580 A calculated at the MP2/6-311++G(2d,2p) level. The topological analysis of the electron density on the H- H direction has resulted in the small pc and positive V pc values (0.0388 and 0.0453 an, respectively) typical of dihydrogen bonding. In contrast, no dihydrogen bonding was observed in the LiH-H2S molecule (3), where the corresponding hydrogen atoms are strongly remote.
A topological analysis of the electron density in the framework of AIM theory, performed for the systems in Figure 6.2, has completely confirmed their formulation as dihydrogen-bonded complexes. In accord with the AIM criteria, the pc and V pc parameters at the bond critical points found in the H- - -H directions are typical of dihydrogen bonds 0.042 and 0.057 au for complex LiH HF and 0.046 and 0.048 au for complex NaH- - -HF, respectively. The presence of the bond critical points can be well illustrated by the molecular graph in Figure 6.3, obtained for the HCCH H-Li complex by Grabowski and co-workers [8]. [Pg.117]

For comparison, the authors have probed a complex formed by the same proton-donor molecule and molecular hydrogen. In this very weak complex, HCCH- - (H2), the H- - (H2) distance has been calculated as 2.606 A (i.e., significantly larger than the sum of the van der Waals radii of H). It is extremely interesting that a topological analysis of the electron density also leads to the appearance of the bond critical point in the H- - (H2) direction. However, the Pc and V pc values are very small (0.0033 and 0.0115 au, respectively) compared with those in the HCCH- - -HLi complex (0.0112 and 0.0254 au, respectively). The most important conclusion of this comparison is There is no evident borderline between the dihydrogen-bonded complexes and the van der Waals systems. [Pg.117]

NH4-CH4]+ complex in the gas phase [36]. Topological analysis of the electron density performed in the framework of AIM theory shows the bond critical points on the H- H directions with pc values of 0.013 an. It is interesting that the electron density in this complex is larger than that obtained for the BH4 - CH4 dihydrogen-bonded system (pc = 0.007 an), the CH4 molecule of which acts as a proton donor. In accordance with the electronic density, the H- H distances in the BH4 - H4C complex were remarkably longer than 2.4 A (2.797, 2.929,... [Pg.139]


See other pages where Topological electron density analysis is mentioned: [Pg.172]    [Pg.232]    [Pg.68]    [Pg.449]    [Pg.451]    [Pg.10]    [Pg.211]    [Pg.57]    [Pg.59]    [Pg.126]    [Pg.128]    [Pg.136]    [Pg.163]    [Pg.218]    [Pg.363]    [Pg.216]    [Pg.380]    [Pg.199]    [Pg.355]    [Pg.355]    [Pg.10]    [Pg.52]    [Pg.64]    [Pg.82]    [Pg.87]    [Pg.91]    [Pg.94]    [Pg.95]    [Pg.107]    [Pg.107]    [Pg.115]    [Pg.118]    [Pg.121]   
See also in sourсe #XX -- [ Pg.294 , Pg.295 , Pg.296 , Pg.297 ]




SEARCH



Density topological

Electron analysis

Electron density distributions topological analysis

Electron density topology

Electron topology

Topological analysis

Topological analysis of the electron density

© 2024 chempedia.info