Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

TO transverse optical

Observation of absorption bands due to LO phonons in RAIR spectra of thin, silica-like films deposited onto reflecting substrates demonstrates an important difference between RAIR and transmission spectra. Berreman has shown that absorption bands related to transverse optical (TO) phonons are observed in transmission infrared spectra of thin films obtained at normal incidence [17]. However, bands related to LO phonons are observed in transmission spectra of the same films obtained at non-normal incidence and in RAIR spectra. Thus, it is possible for RAIR and transmission spectra of thin films of some materials to appear very different for reasons that are purely optical in nature. For example, when the transmission infrared spectrum of a thin, silica-like film on a KBr disc was obtained at normal incidence, bands due to TO phonons were observed near 1060,790,and450cm [18]. [Pg.260]

The vibration spectruin of GaAs, calculated by using the C, and C l values of Tabic 8-4 (TO = transverse optical LO = longitudinal optical LA = longitudinal acoustical TA = transverse acoustical). Experimental points arc from Dolling and Waugh (1965). [Pg.207]

Figure 7. Bulk phonon dispersion curves for KBr and RbCl in their <100> and <111> high-symmetry directions. Both crystals have fee lattices and rocksalt structures. Note that the transverse branches, labeled TA (transverse acoustic) and TO (transverse optical), are doubly degenerate in these directions. (Adapted from Fig. 3 of Ref. 32.)... Figure 7. Bulk phonon dispersion curves for KBr and RbCl in their <100> and <111> high-symmetry directions. Both crystals have fee lattices and rocksalt structures. Note that the transverse branches, labeled TA (transverse acoustic) and TO (transverse optical), are doubly degenerate in these directions. (Adapted from Fig. 3 of Ref. 32.)...
Fig. A.5-22 BaTiOs. Phonon dispersion relation determined by neutron scattering along the [100] direction in the cubic phase, v is the phonon frequency. LA, longitudinal acoustic branch TA, transverse acoustic branch TO, transverse optical branch. The frequency of the TO branch is lower (softer) at 230 °C than at 430 " C, indicating mode softening... Fig. A.5-22 BaTiOs. Phonon dispersion relation determined by neutron scattering along the [100] direction in the cubic phase, v is the phonon frequency. LA, longitudinal acoustic branch TA, transverse acoustic branch TO, transverse optical branch. The frequency of the TO branch is lower (softer) at 230 °C than at 430 " C, indicating mode softening...
The observed (experimentally and theoretically) broadening or narrowing of the response of the nematic reorientation could, and should, be taken into account in the study of nonlinear transverse optical effects involving a focused beam. We end this section with reference to transverse optical bistability, which recently has received considerable attention. [Pg.140]

TO (transverse optical) component, 68. See also LO component and LO vibrational mode splitting, 72 peak frequency evolution, 78 total internal reflection, 67 TRAnsfer of Populations by Double... [Pg.1180]

When metals have Raman active phonons, optical pump-probe techniques can be applied to study their coherent dynamics. Hase and coworkers observed a periodic oscillation in the reflectivity of Zn and Cd due to the coherent E2g phonons (Fig. 2.17) [56]. The amplitude of the coherent phonons of Zn decreased with raising temperature, in accordance with the photo-induced quasi-particle density n.p, which is proportional to the difference in the electronic temperature before and after the photoexcitation (Fig. 2.17). The result indicated the resonant nature of the ISRS generation of coherent phonons. Under intense (mJ/cm2) photoexcitation, the coherent Eg phonons of Zn exhibited a transient frequency shift similar to that of Bi (Fig. 2.9), which can be understood as the Fano interference [57], A transient frequency shift was aslo observed for the coherent transverse optical (TO) phonon in polycrystalline Zr film, in spite of much weaker photoexcitation [58],... [Pg.38]

Bulk silicon is a semiconductor with an indirect band structure, as schematically shown in Fig. 7.12 c. The top of the VB is located at the center of the Brillouin zone, while the CB has six minima at the equivalent (100) directions. The only allowed optical transition is a vertical transition of a photon with a subsequent electron-phonon scattering process which is needed to conserve the crystal momentum, as indicated by arrows in Fig. 7.12 c. The relevant phonon modes include transverse optical phonons (TO 56 meV), longitudinal optical phonons (LO 53.5 meV) and transverse acoustic phonons (TA 18.7 meV). At very low temperature a splitting (2.5 meV) of the main free exciton line in TO and LO replicas can be observed [Kol5]. [Pg.138]

In a microscope, standard polarized epi-illumination cannot distinguish order from disorder in the polar direction (defined as the optical axis) because epi-illumination is polarized transverse to the optical axis and observation is along the optical axis at 180°. However, microscope TIR illumination can be partially polarized in the optical axis direction (the z-direction of Section 7.2) and can thereby detect order in the polar angle direction. Timbs and Thompson(102) used this feature to confirm that the popular lipid probe 3,3 -dioctadecylindocarbocyanine (dil) resides in a supported lipid monolayer with its dipoles parallel to the membrane surface, but labeled antibodies bound to the membrane exhibit totally random orientations. [Pg.326]

At high temperatures above Tb 617 K PMN behaves Hke all other simple perovskites. The dynamics of the system is determined by the soft transverse optical (TO) phonon which exhibits a normal dispersion and is imderdamped at all wave vectors. Below Tb, in addition to the soft mode—which becomes overdamped—a new dielectric dispersion mechanism appears at lower frequencies which can be described by a correlation time distribution function /(t). [Pg.62]

I he notation 0e indicates that this is the dielectric function at frequencies low i ompared with electronic excitation frequencies. We have also replaced co0 with l (, the frequency of the transverse optical mode in an ionic crystal microscopic theory shows that only this type of traveling wave will be readily excited bv a photon. Note that co2 in (9.20) corresponds to 01 e2/me0 for the lattice vibrations (ionic oscillators) rather than for the electrons. The mass of an electron is some thousands of times less than that of an ion thus, the plasma liequency for lattice vibrations is correspondingly reduced compared with that lor electrons. [Pg.241]

At infrared wavelengths extinction by the MgO particles of Fig. 11.2, including those with radius 1 jam, which can be made by grinding, is dominated by absorption. This is why the KBr pellet technique is commonly used for infrared absorption spectroscopy of powders. A small amount of the sample dispersed in KBr powder is pressed into a pellet, the transmission spectrum of which is readily obtained. Because extinction is dominated by absorption, this transmission spectrum should follow the undulations of the intrinsic absorption spectrum—but not always. Comparison of Figs. 10.1 and 11.2 reveals an interesting discrepancy calculated peak extinction occurs at 0.075 eV, whereas absorption in bulk MgO peaks at the transverse optic mode frequency, which is about 0.05 eV. This is a large discrepancy in light of the precision of modern infrared spectroscopy and could cause serious error if the extinction peak were assumed to lie at the position of a bulk absorption band. This is the first instance we have encountered where the properties of small particles deviate appreciably from those of the bulk solid. It is the result of surface mode excitation, which is such a dominant effect in small particles of some solids that we have devoted Chapter 12 to its fuller discussion. [Pg.292]

Comparison of measurements for particles dispersed on and in KBr is quite revealing. The extinction curve for particles on a KBr substrate shows a peak at approximately 400 cm-1, the transverse optical mode frequency for bulk MgO. This feature has been observed a number of times and it is discussed in some of the references already cited. Its explanation now appears to be the tendency of MgO cubes to link together into chains, which more closely... [Pg.366]


See other pages where TO transverse optical is mentioned: [Pg.1301]    [Pg.249]    [Pg.698]    [Pg.484]    [Pg.181]    [Pg.308]    [Pg.9]    [Pg.746]    [Pg.503]    [Pg.284]    [Pg.12]    [Pg.2]    [Pg.1301]    [Pg.249]    [Pg.698]    [Pg.484]    [Pg.181]    [Pg.308]    [Pg.9]    [Pg.746]    [Pg.503]    [Pg.284]    [Pg.12]    [Pg.2]    [Pg.2488]    [Pg.6]    [Pg.93]    [Pg.250]    [Pg.455]    [Pg.5]    [Pg.4]    [Pg.36]    [Pg.49]    [Pg.248]    [Pg.137]    [Pg.275]    [Pg.53]    [Pg.94]    [Pg.270]    [Pg.332]    [Pg.79]    [Pg.409]    [Pg.507]   
See also in sourсe #XX -- [ Pg.186 , Pg.190 ]




SEARCH



Transversal optical

Transverse optic

© 2024 chempedia.info