Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Time domain, resonances

G. Garcia-Calderon, J. ViUavicencio, Transient time-domain resonances and the time scale for tunneUng, Phys. Rev. A 68 (2003) 052107. [Pg.454]

Equation (A 1.6.94) is called the KHD expression for the polarizability, a. Inspection of the denominators indicates that the first temi is the resonant temi and the second temi is tire non-resonant temi. Note the product of Franck-Condon factors in the numerator one corresponding to the amplitude for excitation and the other to the amplitude for emission. The KHD fonnula is sometimes called the siim-over-states fonnula, since fonnally it requires a sum over all intennediate states j, each intennediate state participating according to how far it is from resonance and the size of the matrix elements that coimect it to the states i. and The KHD fonnula is fiilly equivalent to the time domain fonnula, equation (Al.6.92). and can be derived from the latter in a straightforward way. However, the time domain fonnula can be much more convenient, particularly as one detunes from resonance, since one can exploit the fact that the effective dynamic becomes shorter and shorter as the detuning is increased. [Pg.252]

Remade F and Levine R D 1993 Time domain information from resonant Raman excitation profiles a direct inversion by maximum entropy J. Chem. Phys. 99 4908-25... [Pg.1227]

Johnson A E and Myers ABA 1996 A comparison of time- and frequency-domain resonance Raman spectroscopy in triiodide J. Cham. Phys. 104 2497-507... [Pg.1998]

Confirmation analysis In most cases, the occurrence of dynamic resonance can be quickly confirmed. When monitoring phase and amplitude, resonance is indicated by a 180° phase shift as the rotor passes through the resonant zone. Figure 44.44 illustrates a dynamic resonance at 500 rpm, which shows a dramatic amplitude increase in the frequency-domain display. This is confirmed by the 180° phase shift in the time-domain plot. Note that the peak at 1200 rpm is not resonance. The absence of a phase shift, coupled with the apparent modulations in the FFT, discount the possibility that this peak is resonance-related. [Pg.742]

Figure 6.2 Pulse sequences for some common 3D time-domain NMR techniques. Nonselective pulses are indicated by filled bars. Nonselective pulses of variable flip angle are shown by the flip angle )8. Frequency-selective pulses are drawn with diagonal lines in the bars. (Reprinted from J. Mag. Reson. 84, C. Griesinger, et al, 14, copyright (1989), with permission from Academic Press, Inc.)... Figure 6.2 Pulse sequences for some common 3D time-domain NMR techniques. Nonselective pulses are indicated by filled bars. Nonselective pulses of variable flip angle are shown by the flip angle )8. Frequency-selective pulses are drawn with diagonal lines in the bars. (Reprinted from J. Mag. Reson. 84, C. Griesinger, et al, 14, copyright (1989), with permission from Academic Press, Inc.)...
Futamata, M., Maruyama, Y. and Ishikawa, M. (2003) Local electric field and scattering cross section of Ag nanopartides under surface plasmon resonance by finite difference time domain method. J. Phys. Chem. B, 107, 7607-7617. [Pg.54]

Nuclear Resonance Scattering Using Synchrotron Radiation (Mossbauer Spectroscopy in the Time Domain)... [Pg.477]

Equation (9.1) documents that quadmpole splittings A q exhibit quantum-beat spectra with period H/IuAEq superimposed over the time dependence of the nuclear decay exp(—f/t) with mean decay time t = 141 ns for Fe. In Fig. 9.2, quadmpole splittings A q = 0 and 2 mm s in the energy domain (conventional MS) are compared with those in the time domain (MS using synchrotron radiation) [7]. The QBs in the time domain spectmm for A q = 2 mm s are the result of the interference between the radiation scattered by different nuclear resonances. Consequently, their frequencies correspond to the energetic differences between these resonances. [Pg.480]

We can design a controller by specifying an upper limit on the value of Mpco. The smaller the system damping ratio C the larger the value of Mpco is, and the more overshoot, or underdamping we expect in the time domain response. Needless to say, excessive resonance is undesirable. [Pg.150]

Rakowsky, M. H., K. M. More et al. (1995). Time-domain electron paramagnetic resonance as a probe of electron-electron spin-spin interaction in spin-labeled low-spin iron porphyrins. J. Am. Chem. Soc. 117 2049-2057. [Pg.188]

Time Domain Electron Spin Resonance, ed. L. Kevan and R.N. Schwartz, Wiley-Interscience, New York, 1979. [Pg.20]

A major limitation of CW double resonance methods is the sensitivity of the intensities of the transitions to the relative rates of spin relaxation processes. For that reason the peak intensities often convey little quantitative information about the numbers of spins involved and, in extreme cases, may be undetectable. This limitation can be especially severe for liquid samples where several relaxation pathways may have about the same rates. The situation is somewhat better in solids, especially at low temperatures, where some pathways are effectively frozen out. Fortunately, fewer limitations occur when pulsed radio and microwave fields are employed. In that case one can better adapt the excitation and detection timing to the rates of relaxation that are intrinsic to the sample.50 There are now several versions of pulsed ENDOR and other double resonance methods. Some of these methods also make it possible to separate in the time domain overlapping transitions that have different relaxation behavior, thereby improving the resolution of the spectrum. [Pg.162]

Ion detection is carried out using image current detection with subsequent Fourier transform of the time-domain signal in the same way as for the Fourier transform ion cyclotron resonance (FTICR) analyzer (see Section 2.2.6). Because frequency can be measured very precisely, high m/z separation can be attained. Here, the axial frequency is measured, since it is independent to the first order on energy and spatial spread of the ions. Since the orbitrap, contrary to the other mass analyzers described, is a recent invention, not many variations of the instrument exist. Apart from Thermo Fischer Scientific s commercial instrument, there is the earlier setup described in References 245 to 247. [Pg.57]

Kevan, L., Schwartz, R. N. Time Domain Electron Spin Resonance, New York Wiley (1979)... [Pg.115]

In addition, there is a large number of studies involving aromatic alcohols such as phenol [166] or naphthol, which have in part been reviewed before [21], These include time-resolved studies [21], proton transfer models [181], and intermolecular vibrations via dispersed fluorescence [182]. Such doubleresonance and more recently even triple-resonance studies [183] provide important frequency- and time-domain insights into the dynamics of aromatic alcohols, which are not yet possible for aliphatic alcohols. [Pg.21]


See other pages where Time domain, resonances is mentioned: [Pg.805]    [Pg.805]    [Pg.241]    [Pg.251]    [Pg.1200]    [Pg.1499]    [Pg.49]    [Pg.513]    [Pg.54]    [Pg.55]    [Pg.170]    [Pg.33]    [Pg.5]    [Pg.23]    [Pg.482]    [Pg.499]    [Pg.323]    [Pg.326]    [Pg.338]    [Pg.396]    [Pg.178]    [Pg.190]    [Pg.16]    [Pg.73]    [Pg.152]    [Pg.217]    [Pg.13]    [Pg.116]    [Pg.43]    [Pg.285]    [Pg.286]    [Pg.257]    [Pg.59]   
See also in sourсe #XX -- [ Pg.281 ]




SEARCH



Domains resonance

Resonant domain

Time domain

© 2024 chempedia.info