Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Time domain analysis dielectric response

In order to actually cover 19 decades in frequency, dielectric spectroscopy makes use of different measurement techniques each working at its optimum in a particular frequency range. The techniques most commonly applied include time-domain spectroscopy, frequency response analysis, coaxial reflection and transmission methods, and at the highest frequencies quasi-optical and Fourier transform infrared spectroscopy (cf. Fig. 2). A detailed review of these techniques can be found in Kremer and Schonhals [37] and in Lunkenheimer [45], so that in the present context only a few aspects will be summarized. [Pg.137]

It is not a trivial problem to obtain a complete characterization of a material responding over many decades of time. The brute force method would be to carry out experiments over many decades of time. More efficient is to employ more than one instrument, and cover a time span that includes high frequencies. This is now possible with broad dielectric spectroscopy, with which the frequency reuige from 10 to 10 can be attained by using different techniques - time domain spectroscopy, frequency response analysis using AC-bridges, and coaxial line reflectrometry. Of course, each isothermal experiment has to be repeated at various temperatures in order to determine the temperature dependence. [Pg.818]

The considered model of a straight line of M nanoparticles illustrates only general features of dielectric losses caused by an M nanoparticle cluster in polymer matrix. Actually such cluster is a complex fractal system. Analysis of dielectric relaxation parameters of this process allowed the determination of fractal properties of the percolation cluster [104], The dielectric response for this process in the time domain can be described by the Kohlrausch-Williams-Watts (KWW) expression... [Pg.565]

Analysis of dielectric relaxation parameters of this process allowed us to determine the fractal properties of the percolation cluster [70]. The dielectric response for this process in the time domain can be described by the... [Pg.66]

Conductive-system dispersive response may be associated with a distribution of relaxation times (DRT) at the complex resistivity level, as in the work of Moynihan, Boesch, and Laberge [1973] based on the assumption of stretched-exponential response in the time domain (Eq. (118), Section 2.1.2.7), work that led to the widely used original modulus formalism (OMF) for data fitting and analysis, hi contrast, dielectric dispersive response may be characterized by a distribution of dielectric relaxation times defined at the complex dielectric constant or permittivity level (Macdonald [1995]). Its history, summarized in the monograph of Bbttcher and Bordewijk [1978], began more than a hundred years ago. Until relatively recently, however, these two types of dispersive response were not usually distinguished, and conductive-system dispersive response was often analyzed as if it were of dielectric character, even when this was not the case. In this section, material parameters will be expressed in specific form appropriate to the level concerned. [Pg.264]


See other pages where Time domain analysis dielectric response is mentioned: [Pg.349]    [Pg.132]    [Pg.274]    [Pg.274]    [Pg.505]    [Pg.521]    [Pg.387]   
See also in sourсe #XX -- [ Pg.8 , Pg.12 ]

See also in sourсe #XX -- [ Pg.8 , Pg.12 ]




SEARCH



Dielectric analysis

Dielectric response

Response Analysis

Response domain

Time domain

Time domain analysis

Time domain response

Time response

© 2024 chempedia.info