Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thiamine pyrophosphate, ylid form

Decarboxylation of an a-keto acid like pyruvate is a difficult reaction for the same reason as are the ketol condensations (see fig. 12.33) Both kinds of reactions require the participation of an intermediate in which the carbonyl carbon carries a negative charge. In all such reactions that occur in metabolism, the intermediate is stabilized by prior condensation of the carbonyl group with thiamine pyrophosphate. In figure 13.5 thiamine pyrophosphate and its hydroxyethyl derivative are written in the doubly ionized ylid form rather than the neutral form because this is the form that actually participates in the reaction even though it is present in much smaller amounts. [Pg.287]

In the first step of the conversion catalyzed by pyruvate decarboxylase, a carbon atom from thiamine pyrophosphate adds to the carbonyl carbon of pyruvate. Decarboxylation produces the key reactive intermediate, hydroxyethyl thiamine pyrophosphate (HETPP). As shown in figure 13.5, the ionized ylid form of HETPP is resonance-stabilized by the existence of a form without charge separation. The next enzyme, dihydrolipoyltransacetylase, catalyzes the transfer of the two-carbon moiety to lipoic acid. A nucleophilic attack by HETPP on the sulfur atom attached to carbon 8 of oxidized lipoic acid displaces the electrons of the disulfide bond to the sulfur atom attached to carbon 6. The sulfur then picks up a proton from the environment as shown in figure 13.5. This simple displacement reaction is also an oxidation-reduction reaction, in which the attacking carbon atom is oxidized from the aldehyde level in HETPP to the carboxyl level in the lipoic acid derivative. The oxidized (disulfide) form of lipoic acid is converted to the reduced (mer-capto) form. The fact that the two-carbon moiety has become an acyl group is shown more clearly after dissocia-... [Pg.287]

The facility with which 1,3-diazolium cations form ylids (carbenes) by 2-deprotonation is at the heart of the biological activity of thiamine pyrophosphate. Lithiation of the azoles is regioselective for the 2-position in the 1,3-isomers and for 5-position in the 1,2-isomers. [Pg.369]

The crystal structures of thiamin-dependent enzymes (see next section) as well as modeling102 103 suggest that lactylthiamin pyrophosphate has the conformation shown in Eq. 14-21. If so, it would be formed by the addition of the ylid to the carbonyl of pyruvate in accord with stereoelectronic principles, and the carboxylate group would also be in the correct orientation for elimination to form the enamine in Eq. 14-21, step b.82 83a A transient 380- to 440-nm absorption band arising during the action of pyruvate decarboxylase has been attributed to the enamine. [Pg.733]


See other pages where Thiamine pyrophosphate, ylid form is mentioned: [Pg.668]   
See also in sourсe #XX -- [ Pg.287 , Pg.288 ]




SEARCH



Thiamin pyrophosphate

Thiamine pyrophosphate

Ylid

Ylids

© 2024 chempedia.info