Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics, first second laws

Comparison of the combined first/second law (4.28) with (4.30) leads to the more general and rigorous thermodynamic definitions for the intensive properties T, —P respectively conjugate to the extensive properties S, V ... [Pg.138]

A. Thermodynamics — First, second, and third laws, thermochemistry, ideal and... [Pg.5]

In classical thermodynamics, the Second Law consists of two parts (see Kestin 1979). The first part defines the entropy for reversible processes based on Carathdodory s theorem. The latter part concludes that entropy increases in all irreversible processes. Recall that, as discussed in Sect. 3.1, the terminologies of the reversible and irreversible processes are used here in the sense of classical thermodynamics however, in this Section irreversible processes acquire a different interpretation to that used in the classical sense. That is, we may be able to introduce an apparent irreversible process for the case that considers a non-measurable energy, which will be discussed in more detail in Sect. 3.3.2. [Pg.90]

Note 3.4 (On the constitutive relation and the Second Law of Thermodynamics). The Second Law of Thermodynamics essentially gives a relationship between the heat flux q that is externally supplied and the induced temperature field. Some scientists have stated that constitutive relations that depend on fields other than the temperature can also be derived by the Second Law however, as shown above, the Second Law does not consider fields other than the heat flux and temperature. All the constitutive relations can be derived from the First Law of Thermodynamics, internal energy and thermodynamic potentials induced by Legendre transformations (see Sect. 3.4). ... [Pg.97]

Like the first law of thermodynamics, the second law of thermodynamics can be expressed in terms of the system and surroundings interacting, a much more useful form. It is ... [Pg.86]

Thermodynamics It deals with the transformation of energy from one form to another (EB is an expression of the first law of thermodynamics). The second law states that in a process of heat transfer alone, energy may be transferred only from higher T to a lower T. [Pg.22]

Like the first law of thermodynamics, the second law is a postulate, based on experience and cannot be proved. The second law formed the basis for treating the concept of equilibrium within physical chemistry. In this chapter the second law is introduced along with the use of the concept of equilibrium their applications are illustrated by practical problems within the science of construction materials. [Pg.122]

Derive Eq. III-21 from the first and second laws of thermodynamics and related definitions. [Pg.93]

The treatments that are concerned in more detail with the nature of the adsorbed layer make use of the general thermodynamic framework of the derivation of the Gibbs equation (Section III-5B) but differ in the handling of the electrochemical potential and the surface excess of the ionic species [114-117]. The derivation given here is after that of Grahame and Whitney [117]. Equation III-76 gives the combined first- and second-law statements for the surface excess quantities... [Pg.195]

By the standard methods of statistical thermodynamics it is possible to derive for certain entropy changes general formulas that cannot be derived from the zeroth, first, and second laws of classical thermodynamics. In particular one can obtain formulae for entropy changes in highly di.sperse systems, for those in very cold systems, and for those associated, with the mixing ofvery similar substances. [Pg.374]

Accurate temperature measurements in real-life situations are difficult to make using the KTTS. Most easily used thermometers are not thermodynamic that is, they do not operate on principles of the first and second laws. Most practicable thermometers depend upon some principle that is a repeatable and single-valued analogue of temperature, and they are used as interpolation devices of practical and utilitarian temperature scales which are themselves... [Pg.396]

Thermodynamics is a deductive science built on the foundation of two fundamental laws that circumscribe the behavior of macroscopic systems the first law of thermodynamics affirms the principle of energy conservation the second law states the principle of entropy increase. In-depth treatments of thermodynamics may be found in References 1—7. [Pg.481]

The foUowiag criterion of phase equUibrium can be developed from the first and second laws of thermodynamics the equUibrium state for a closed multiphase system of constant, uniform temperature and pressure is the state for which the total Gibbs energy is a minimum, whence... [Pg.498]

In the broadest sense, thermodynamics is concerned with mathematical relationships that describe equiUbrium conditions as well as transformations of energy from one form to another. Many chemical properties and parameters of engineering significance have origins in the mathematical expressions of the first and second laws and accompanying definitions. Particularly important are those fundamental equations which connect thermodynamic state functions to real-world, measurable properties such as pressure, volume, temperature, and heat capacity (1 3) (see also Thermodynamic properties). [Pg.232]

Fundamental Property Relation. The fundamental property relation, which embodies the first and second laws of thermodynamics, can be expressed as a semiempifical equation containing physical parameters and one or more constants of integration. AH of these may be adjusted to fit experimental data. The Clausius-Clapeyron equation is an example of this type of relation (1—3). [Pg.232]

Funda.menta.1 PropertyRela.tion. For homogeneous, single-phase systems the fundamental property relation (3), is a combination of the first and second laws of thermodynamics that may be written as... [Pg.233]

In the same way that the first law of thermodynamics cannot be formulated without the prior recognition of internal energy as a property, so also the second law can have no complete and quantitative expression without a prior assertion of the existence of entropy as a property. [Pg.514]

The fundamental thermodynamic properties that arise in connection with the first and second laws of thermodyuamics are internal energy and entropy These properties, together with the two laws for which they are essential, apply to all types of systems. However, different types of systems are characterized by different sets of measurable coordinates or variables. The type of system most commonly... [Pg.514]

The second law of thermodynamics was actually postulated by Carnot prior to the development of the first law. The original statements made concerning the second law were negative—they said what would not happen. The second law states that heat will not flow, in itself, from cold to hot. While no mathematical relationships come directly from the second law, a set of equations can be developed by adding a few assumptions for use in compressor analysis. For a reversible process, entropy, s, can be defined in differential form as... [Pg.29]

Because Carnot s 1824 manuscript remained unpublished at the time of his death m 1832, it was left to Kelvin and Rudolf Clausius to show how the second law of thermodynamics was implicit in Carnot s work. For this reason Kelvin once referred to Carnot as the profoundest thinker in thermodynamic philosopihy in the first thirty years of the nineteenth century. ... [Pg.220]

In his first work on thermodynamics in 1873, Gibbs immediately combined the differential forms of the first and second laws of thermodynamics for the reversible processes of a system to obtain a single Tundamciital equation ... [Pg.580]

The second law of thermodynamics also consists of two parts. The first part is used to define a new thermodynamic variable called entropy, denoted by S. Entropy is the measure of a system s energy that is unavailable for work.The first part of the second law says that if a reversible process i f takes place in a system, then the entropy change of the system can be found by adding up the heat added to the system divided by the absolute temperature of the system when each small amount of heat is added ... [Pg.1127]

Thus, in adiabatic processes the entropy of a system must always increase or remain constant. In words, the second law of thermodynamics states that the entropy of a system that undergoes an adiabatic process can never decrease. Notice that for the system plus the surroundings, that is, the universe, all processes are adiabatic since there are no surroundings, hence in the universe the entropy can never decrease. Thus, the first law deals with the conservation of energy in any type of process, while the sec-... [Pg.1128]

The efficiency of the engine would be greatest if it could be arranged that W = QEI, QC = 0, giving an efficiency of 1 or 100 percent efficient. In this case, all the heat absorbed at the high temperature is converted into work. This is perfectly valid from the point of view of the first law of thermodynamics, because energy is conserved. However, from the second law. [Pg.1129]

Units of Energy 209. The First Law of Thermodynamics 210, Entropy Production Flow Systems 214. Application of (he Second Law 216. Summary of Thermodynamic Equations 223. [Pg.135]

In fluid mechanics the principles of conservation of mass, conservation of momentum, the first and second laws of thermodynamics, and empirically developed correlations are used to predict the behavior of gases and liquids at rest or in motion. The field is generally divided into fluid statics and fluid dynamics and further subdivided on the basis of compressibility. Liquids can usually be considered as incompressible, while gases are usually assumed to be compressible. [Pg.168]

The heat capacity of a substance is extremely important in thermodynamic analysis involving both the first and second laws. [Pg.215]

The device will be impossible if it violates either the first or second law of thermodynamics. From Figure 2-34 the inlet and outlet properties are ... [Pg.220]

The physical laws of thermodynamics, which define their efficiency and system dynamics, govern compressed-air systems and compressors. This section discusses both the first and second laws of thermodynamics, which apply to all compressors and compressed-air systems. Also applying to these systems are the ideal gas law and the concepts of pressure and compression. [Pg.556]


See other pages where Thermodynamics, first second laws is mentioned: [Pg.209]    [Pg.135]    [Pg.108]    [Pg.249]    [Pg.559]    [Pg.814]    [Pg.79]    [Pg.38]    [Pg.396]    [Pg.75]    [Pg.167]    [Pg.237]    [Pg.470]    [Pg.626]    [Pg.841]    [Pg.1130]   
See also in sourсe #XX -- [ Pg.372 ]




SEARCH



First law

Second Law

Thermodynamic first law

Thermodynamic law

Thermodynamics laws

Thermodynamics second law

Thermodynamics, first law

© 2024 chempedia.info