Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

INDEX thermal conductivities

Thermal conductivity Index of refraction Dielectric constants Zincblende Polytype Bandgap energy Lattice constant Index of refraction Bandgap energy Lattice constants Thermal expansion... [Pg.367]

Thermal Properties. Thermal properties include heat-deflection temperature (HDT), specific heat, continuous use temperature, thermal conductivity, coefficient of thermal expansion, and flammability ratings. Heat-deflection temperature is a measure of the minimum temperature that results in a specified deformation of a plastic beam under loads of 1.82 or 0.46 N/mm (264 or 67 psi, respectively). Eor an unreinforced plastic, this is typically ca 20°C below the glass-transition temperature, T, at which the molecular mobility is altered. Sometimes confused with HDT is the UL Thermal Index, which Underwriters Laboratories estabflshed as a safe continuous operation temperature for apparatus made of plastics (37). Typically, UL temperature indexes are significantly lower than HDTs. Specific heat and thermal conductivity relate to insulating properties. The coefficient of thermal expansion is an important component of mold shrinkage and must be considered when designing composite stmctures. [Pg.264]

Alloy Designation Tensile Strength 0.2% Yield Working Hardness Coeff. of Thermal Expansion Thermal Conductivity Cost Index... [Pg.459]

If now the physical properties of the body (e.g., thermal expansion, compressibility, refractive index, electric and thermal conductivities, dielectric constant, and magnetic permeability) are measured along OPi, OP2, OP,. .. we find that all the bodies fall into one or other of two large groups —... [Pg.193]

Bulk property detectors function by measuring some bulk physical property of the mobile phase, e.g., thermal conductivity or refractive index. As a bulk property is being measured, the detector responses are very susceptible to changes in the mobile phase composition or temperature these devices cannot be used for gradient elution in LC. They are also very sensitive to the operating conditions of the chromatograph (pressure, flow-rate) [31]. Detectors such as TCD, while approaching universality in detection, suffer from limited sensitivity and inability to characterise eluate species. [Pg.178]

The next step in this study is to test this control algorithm on the actual laboratory reactor. The major difficulty is the direct measurement of the state variables in the reactor (T, M, I, W). Proposed strategy is to measure total mols of polymer (T) with visible light absorption and monomer concentration (M) with IR absorption. Initiator concentration (I) can be monitored by titrating the n-butyl lithium with water and detecting the resultant butane gas in a thermal conductivity cell. Finally W can be obtained by refractive index measurements in conjuction with the other three measurements. Preliminary experiments indicate that this strategy will result in fast and accurate measurements of the state vector x. [Pg.201]

Hyphenated methods can be divided into two types those that do and those that do not destroy the sample in the process of analysis. Spectrophotometric methods, thermal conductivity, and refractive index methods of detection do not destroy the sample. Chromatographic methods using flame ionization and similar detection methods destroy the sample as it is detected. Any hyphenated method that involves MS or thermal analysis (TA) will also destroy the sample. In most cases, the identification of the components in soil is most important, so the destruction of the analyte is of less importance. [Pg.323]

Diamond. In this structure (see Chapter 7) all the atoms are equivalent each atom being surrounded by a perfect tetrahedron of four other carbons, forming with each one of them a localized two-electron bond. Diamond has a high density and refraction index and thermal conductivity and the highest melting point ( 4000°C) of any element. [Pg.494]

Irradiation by fast neutrons causes a densification of vitreous silica that reaches a maximum value of 2.26 g/cm3, ie, an increase of approximately 3%, after a dose of 1 x 1020 neutrons per square centimeter. Doses of up to 2 x 1020 n/cm2 do not further affect this density value (190). Quartz, tridymite, and cristobalite attain the same density after heavy neutron irradiation, which means a density decrease of 14.7% for quartz and 0.26% for cristobalite (191). The resulting glass-like material is the same in each case, and shows no x-ray diffraction pattern but has identical density, thermal expansion (192), and elastic properties (193). Other properties are also affected, ie, the heat capacity is lower than that of vitreous silica (194), the thermal conductivity increases by a factor of two (195), and the refractive index, increases to 1.4690 (196). The new phase is called amorphous silica M, after metamict, a word used to designate mineral disordered by radiation in the geological past (197). [Pg.509]

The physical properties of solvents greatly influence the choice of solvent for a particular application. The solvent should be liquid under the temperature and pressure conditions at which it is employed. Its thermodynamic properties, such as the density and vapor pressure, temperature and pressure coefficients, as well as the heat capacity and surface tension, and transport properties, such as viscosity, diffusion coefficient, and thermal conductivity, also need to be considered. Electrical, optical, and magnetic properties, such as the dipole moment, dielectric constant, refractive index, magnetic susceptibility, and electrical conductance are relevant, too. Furthermore, molecular... [Pg.51]

Diamond Hints, although not approaching bulk diamond, are harder than most refractory nitride and carbide thin films, which makes them attractive for tribological coatings. Transparency in the visible and infrared regions of the optical spectrum can be maintained and index-of-refraction values approaching that of bulk diamond have been measured. Electrical resistivities of diamond films have been produced within the full range of bulk diamond, and thermal conductivities equivalent to those of bulk diamond also have been achieved. As substrates for semiconductor electronic devices, diamond films can be produced by both the PACVD and IBRD techniques. [Pg.486]


See other pages where INDEX thermal conductivities is mentioned: [Pg.80]    [Pg.21]    [Pg.1]    [Pg.21]    [Pg.80]    [Pg.21]    [Pg.1]    [Pg.21]    [Pg.585]    [Pg.84]    [Pg.66]    [Pg.509]    [Pg.127]    [Pg.510]    [Pg.557]    [Pg.145]    [Pg.386]    [Pg.184]    [Pg.191]    [Pg.323]    [Pg.133]    [Pg.166]    [Pg.369]    [Pg.393]    [Pg.429]    [Pg.330]    [Pg.391]    [Pg.12]    [Pg.282]    [Pg.267]    [Pg.172]    [Pg.220]    [Pg.290]    [Pg.219]    [Pg.510]    [Pg.557]    [Pg.138]   
See also in sourсe #XX -- [ Pg.21 ]




SEARCH



Conductance INDEX

Thermal index

© 2024 chempedia.info