Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Theory of Tunneling Splitting

The instanton theory of tunneling splittings in hydrogen-bonded systems and decay of metastable states in polyatomic molecules was studied by Nakamura et al. [182, 192, 195, 201-204, 216] They formulated a rigorous solution of the multidimensional Hamiltonian-Jacobi and transport equations, developed numerical methods to construct a multidimensional tunneling instanton path, and applied this method to HO [201], malonaldehyde [192, 195], vinyl radical [203], and formic acid dimer [202]. Coupled electron and proton transfer reactions were recently reviewed by Hammes-Schiffer and Stuchebrukhov [209]. [Pg.334]

In this section, generalizations of the instanton theory and the modified WKB theory described in Chapter 2 to multidimensional space are presented [43], Those who are not interested in the generalization of the instanton approach and the proof of its equivalence to the modified WKB theory can skip Section 6.1.1 and Section 6.1.2. In Section 6.1.3 a general WKB formulation for a general Hamiltonian in curved space is provided and its final expression of tunneling splitting can be directly applied to any real systems. [Pg.75]

In spin relaxation theory (see, e.g., Zweers and Brom[1977]) this quantity is equal to the correlation time of two-level Zeeman system (r,). The states A and E have total spins of protons f and 2, respectively. The diagram of Zeeman splitting of the lowest tunneling AE octet n = 0 is shown in fig. 51. Since the spin wavefunction belongs to the same symmetry group as that of the hindered rotation, the spin and rotational states are fully correlated, and the transitions observed in the NMR spectra Am = + 1 and Am = 2 include, aside from the Zeeman frequencies, sidebands shifted by A. The special technique of dipole-dipole driven low-field NMR in the time and frequency domain [Weitenkamp et al. 1983 Clough et al. 1985] has allowed one to detect these sidebands directly. [Pg.116]

Needless to say, tunneling is one of the most famous quantum mechanical effects. Theory of multidimensional tunneling, however, has not yet been completed. As is well known, in chemical dynamics there are the following three kinds of problems (1) energy splitting due to tunneling in symmetric double-well potential, (2) predissociation of metastable state through... [Pg.114]

The theory developed for tunneling splitting can be easily extended to the decay of the metastable state through multidimensional tunneling, namely, tunneling predissociation of polyatomic molecules. In the case of predissociation, however, the instanton trajectory cannot be fixed at both ends, but one end should be free (see Fig. 17). The boundary conditions are... [Pg.134]

Q vibration is not directly coupled to the bath of harmonic oscillators. This assumption is similar to the approach employed by Silbey and Suarez who used a tunneling splitting that depends on the oscillating transfer distance Q in their spin-boson Hamiltonian. Borgis and Hynes, too, have made this assumption in the context of Marcus theory. [Pg.81]


See other pages where Theory of Tunneling Splitting is mentioned: [Pg.129]    [Pg.2]    [Pg.75]    [Pg.77]    [Pg.79]    [Pg.81]    [Pg.83]    [Pg.85]    [Pg.87]    [Pg.89]    [Pg.91]    [Pg.93]    [Pg.95]    [Pg.97]    [Pg.99]    [Pg.101]    [Pg.103]    [Pg.105]    [Pg.107]    [Pg.129]    [Pg.2]    [Pg.75]    [Pg.77]    [Pg.79]    [Pg.81]    [Pg.83]    [Pg.85]    [Pg.87]    [Pg.89]    [Pg.91]    [Pg.93]    [Pg.95]    [Pg.97]    [Pg.99]    [Pg.101]    [Pg.103]    [Pg.105]    [Pg.107]    [Pg.128]    [Pg.254]    [Pg.1]    [Pg.33]    [Pg.96]    [Pg.133]    [Pg.136]    [Pg.156]    [Pg.183]    [Pg.6]    [Pg.26]    [Pg.167]    [Pg.190]    [Pg.115]    [Pg.122]    [Pg.195]    [Pg.111]    [Pg.244]    [Pg.73]    [Pg.130]    [Pg.7]    [Pg.36]   


SEARCH



Tunnel splitting

Tunneling splitting

Tunneling theory

© 2024 chempedia.info