Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The CCSD F12 model in TURBOMOLE

The implementation of the CCSD(F12) model in Turbomole involves many quantities and a variety of algorithms that are used for the evaluation of the CCSD(F12) energy. [Pg.20]

The ionization potentials and electron affinities of the H, C, N, O and F atoms have been computed by means of state-of-the-art electronic structure methods. The conventional coupled-cluster calculations were performed up to the connected pentuple excitation level. For the purpose of the basis set truncation correction the implementation of the CCSD(F12) model in Turbomole was applied. Final results were supplemented with relativistic and diagonal Born-Oppenheimer corrections. Estimated values of the IPs and EAs are in good agreement with the experimental values and the deviations do not exceed 0.7 meV, in the cases of H, C and N atoms and the IP of O atom. The results obtained for fluorine differ by ca. 1 and 5 meV from the experiment, respectively for the IP and EA. The EA of oxygen is plagued with discrepancy that amounts to ca. 4 meV. [Pg.81]


See other pages where The CCSD F12 model in TURBOMOLE is mentioned: [Pg.15]    [Pg.16]    [Pg.18]    [Pg.20]    [Pg.22]    [Pg.24]    [Pg.26]    [Pg.28]    [Pg.30]    [Pg.30]    [Pg.32]    [Pg.34]    [Pg.36]    [Pg.38]    [Pg.40]    [Pg.42]    [Pg.44]    [Pg.46]    [Pg.48]    [Pg.50]    [Pg.52]    [Pg.54]   


SEARCH



CCSD

TURBOMOLE

© 2024 chempedia.info