Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Binary System Hydroquinone-Rare Gas

In these equilibria the gas phase consists of almost pure argon, [Pg.36]

Let us first consider the three-phase equilibrium ( -clathrate-gas, for which the values of P and x = 3/( +3) were determined at 25°C. When the temperature is raised the argon content in the clathrate diminishes according to Eq. 27, while the pressure can be calculated from Eq. 38 by taking yA values following from Eq. 27 and the same force constants as used in the calculation of Table III. It is seen that the experimental results at 60°C and 120°C fall on the line so calculated. At a certain temperature and pressure, solid Qa will also be able to coexist with a solution of argon in liquid hydroquinone at this point (R) the three-phase line -clathrate-gas is intersected by the three-phase line -liquid-gas. At the quadruple point R solid a-hydroquinone (Qa), a hydroquinone-rich liquid (L), the clathrate (C), and a gas phase are in equilibrium the composition of the latter lies outside the part of the F-x projection drawn in Fig. 3. The slope of the three-phase line AR must be very steep, because of the low solubility of argon in liquid hydroquinone. [Pg.37]

Along the three-phase line liquid-clathrate-gas the variation of the composition with temperature is considerable (cf. CD in Fig. 3), because when applying Eq. 27 to this equilibrium, the relatively small quantity AH = 0.16 kcal/mole has to be replaced by the much larger difference/ —//ql between the partial molar heat functions of / -hydroquinone and the liquid phase, which amounts to about —6 kcal/mole. The argon content of the solid reaches a minimum at the quadruple point. [Pg.37]

In the P-T projection the difference in slopes of the three-phase lines -clathrate-gas and liquid-clathrate-gas at the quadruple point R is determined by the heat of fusion of the number of moles of hydroquinone associated with one mole of argon in the clathrate under the conditions prevailing at R. If we extrapolate the three-phase line liquid-clathrate-gas to lower pressures (where it is no longer stable), the value of yA decreases until it becomes zero when we are dealing with pure / -hydroquinone. Hence, the metastable part of this three-phase line ends in the triple point B of /1-hydro- [Pg.37]

The occurrence of solid clathrate solutions is clearly seen in Fig. 4, which gives a cross section of the P-T-x diagram at 60°C according to recent results.28 The two two-phase equilibria clath-rate-gas and clathrate-hydroquinone are separated by a one-phase [Pg.38]


See other pages where The Binary System Hydroquinone-Rare Gas is mentioned: [Pg.35]   


SEARCH



Binary systems

Hydroquinone

Hydroquinones

Rare gas

THE BINARY SYSTEM

© 2024 chempedia.info