Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetramethylammonium bromide, effect

Fluoride ion is effective in promoting the reduction of aldehydes by organosil-icon hydrides (Eq. 161). The source of fluoride ion is important to the efficiency of reduction. Triethylsilane reduces benzaldehyde to triethylbenzyloxysilane in 36% yield within 10-12 hours in anhydrous acetonitrile solvent at room temperature when tetraethylammonium fluoride (TEAF) is used as the fluoride ion source and in 96% yield when cesium fluoride is used.83 The carbonyl functions of both p-anisaldehyde and cinnamaldehyde are reduced under similar conditions. Potassium bromide or chloride, or tetramethylammonium bromide or chloride are not effective at promoting similar behavior under these reaction conditions.83 Moderate yields of alcohols are obtained by the KF-catalyzed PMHS, (EtO SiH, or Me(EtO)2SiH reduction of aldehydes.80,83,79... [Pg.59]

The ammonium catalyst can also influence the reaction path and higher yields of the desired product may result, as the side reactions are eliminated. In some cases, the structure of the quaternary ammonium cation may control the product ratio with potentially tautomeric systems as, for example, with the alkylation of 2-naph-thol under basic conditions. The use of tetramethylammonium bromide leads to predominant C-alkylation at the 1-position, as a result of the strong ion-pair binding of the hard quaternary ammonium cation with the hard oxy anion, whereas with the more bulky tetra-n-butylammonium bromide O-alkylation occurs, as the binding between the cation and the oxygen centre is weaker [11], Similar effects have been observed in the alkylation of methylene ketones [e.g. 12, 13]. The stereochemistry of the Darzen s reaction and of the base-initiated formation of cyclopropanes under two-phase conditions is influenced by the presence or absence of quaternary ammonium salts [e.g. 14], whereas chiral quaternary ammonium salts are capable of influencing the enantioselectivity of several nucleophilic reactions (Chapter 12). [Pg.2]

An examination of Figures 1-6 indicates that Equation 1 is valid under conditions of constant x for potassium, ammonium, and tetramethylammonium bromides in ethanol-water mixtures. All three salts show an ability to salt out ethanol from these mixtures (i.e., increase its concentration in the equilibrium vapor) which is verified by their k values shown in Table XVIII. Also, the results for tetra-n-propylammonium bromide and tetra-n-butylammonium bromide in ethanol-water mixtures reveal that Equation 1 can be used to predict the salt effects of these systems however, these two salts demonstrate a propensity to salt in ethanol (i.e., decrease its vapor concentration) in ethanol-water mixtures. On the other hand, Figures 7-9 and the data in Table XVIII reveal that Equation 1 cannot be used to correlate the salt effects of tetraethylammonium bromide in ethanol-water. For this system, a linear dependence of log aja vs. z is observed initially however, a gradual levelling off occurs at higher concentrations. [Pg.118]

The choice of the catalyst is an important factor in PTC. Very hydrophilic onium salts such as tetramethylammonium chloride are not particularly active phase transfer agents for nonpolar solvents, as they do not effectively partition themselves into the organic phase. Table 5.2 shows relative reaction rates for anion displacement reactions for a number of common phase transfer agents. From the table it is clear that the activities of phase transfer catalysts are reaction dependent. It is important to pick the best catalyst for the job in hand. The use of onium salts containing both long and very short alkyl chains, such as hexade-cyltrimethylammonium bromide, will promote stable emulsions in some reaction systems, and thus these are poor catalysts. [Pg.115]

The data in Tables I-XVI (see Appendix for all tables) show the isobaric vapor-liquid equilibrium results at the boiling point for potassium, ammonium, tetramethylammonium, tetraethylammonium, tetra-n-propylammonium, and tetra-n-butylammonium bromides in various ethanol-water mixtures at fixed liquid composition ratios. The temperature, t, is the boiling temperature for all solutions in these tables. In all cases, the ethanol-water composition was held constant between 0.20 and 0.35 mole fraction ethanol since it is in this range that the most dramatic salt effects on vapor-liquid equilibrium in this particular system should be observed. That is, previous data (12-15,38) have demonstrated that a maximum displacement of the vapor-liquid equilibrium curve by salts frequently occurs in this region. In the results presented here, it should be noted that Equation 1 has been modified to... [Pg.109]

The effect of the anion on the copolymerization rate is controversial. Hilt et al.41 established for different sodium halides the following order of efficiency F < Cl < Br < J . This order was interpreted on the basis of the increase in nucleophilicity or polarizability of the anions. Sfluparek and Mleziva 43) observed that the reaction rate of the benzoate anion was about twice as high as that of the bromide anion in the copolymerization of epichlorohydrine with phthalic anhydride. On the other hand, Luston and Manasek56) did not detect any effect of the anion size on the copolymerization rate initiated by tetramethylammonium and tetrabutylammonium halides. [Pg.102]

This result is consistent with the general mechanism for hydrogen halide additions. These products are formed because the solvent competes with halide ion as the nucleophilic component in the addition. Solvent addition can occur via a concerted mechanism or by capture of a carbocation intermediate. Addition of a halide salt increases the likelihood of capture of a carbocation intermediate by halide ion. The effect of added halide salt can be detected kinetically. For example, the presence of tetramethylammonium chloride increases the rate of addition of hydrogen chloride to cyclohexene. Similarly, lithium bromide increases the rate of addition of hydrogen bromide to cyclopentene. ... [Pg.479]


See other pages where Tetramethylammonium bromide, effect is mentioned: [Pg.25]    [Pg.26]    [Pg.366]    [Pg.578]    [Pg.293]    [Pg.108]    [Pg.223]    [Pg.282]    [Pg.704]    [Pg.706]    [Pg.120]    [Pg.189]    [Pg.68]    [Pg.64]    [Pg.706]    [Pg.708]    [Pg.224]    [Pg.227]    [Pg.207]    [Pg.52]    [Pg.451]    [Pg.235]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Bromide, effects

Tetramethylammonium

Tetramethylammonium Bromid

Tetramethylammonium bromide

© 2024 chempedia.info