Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1,2,2,2-tetrachloroethane solubility parameter

The solubility parameter of poly(ethylene terephthalate) is about 21.8 MPa but because it is a highly crystalline material only proton donors that are capable of interaction with the ester groups are effective. A mixture of phenol and tetrachloroethane is often used when measuring molecular weights, which are about 20 000 in the case of commercial polymers. [Pg.718]

Solubility of the three commercial polysulfones follows the order PSF > PES > PPSF. At room temperature, all three of these polysulfones as well as the vast majority of other aromatic sulfone-based polymers can be readily dissolved in a few highly polar solvents to form stable solutions. These solvents include NMP, DMAc, pyridine, and aniline. 1,1,2-Trichloroethane and 1,1,2,2-tetrachloroethane are also suitable solvents but are less desirable because of their potentially harmful health effects. PSF is also readily soluble in a host of less polar solvents by virtue of its lower solubility parameter. [Pg.467]

The values a for seven polyarylates of different chemical structure, obtained by high-temperature (equilibrium) and interfacial polycondensation, determined in three solvents (sirmn-tetrachloroethane, tetrahydrofuran and 1,4-dioxane) are accepted according to the data of work [53]. The fractal dimension Dj. experimental values (o ) in the indicated solvents were determined according to the Eq. (4). The values of solubility parameter s for these solvents are taken from hterary sources [25, 36, 56]. The fractal dimension 5 of solvent molecules stracture was determined according to the equation [71] ... [Pg.32]

The authors [91] proposed description of organic phase influence on limiting characteristics of polyurethanearylates (PUAr) interfacial polycondensation. As it is known [55], one from the methods of polymer solubility parameter 5 experimental determination is plotting of the dependence of intrinsic viscosity [t ], measured in several solvents, on this solvents solubility parameter 5 value. The smaller difference 6p-5J or the better solvent thermodynamical quality in respect of polymer is, the larger [q] is. The dependences [q](5 ) have usually belllike shape and such dependence maximum corresponds to 5 [55]. In Fig. 23 the dependence of on 5 of solvents, used as organic phase at PUAr interfacial polycondensation is adduced. The dependence q /S ) bell-like shape is obtained again and its maximum corresponds to 5 10 (cal/cm ), that is a reasonable estimation for PUAr [36, 55]. Let us note that all q values were determined in one solvent, which was not used at synthesis, namely, in mixture phenol-simm-tetrachloroethane. The dependence qj 4(5 ), adduced in Fig. 23, allows to make two conclusions. Firstly, the value q, reached in PUAr interfacial polycondensation process, is controlled by solvent thermodynamical qnality and the greatest... [Pg.42]

Solubility of the three commercial polysulfones follows the order PSF > PES > PPSF. At room temperature, all three of these polysulfones as well as the vast majority of other aromatic sulfone-based polymers can be readily dissolved in a handful of highly polar solvents to form stable solutions. These powerful solvents include NMP, DMAc, pyridine, and aniline. 1,1,2-Trichloroethane and 1,1,2,2-tetrachloroethane are also suitable solvents but are less desirable because of their potentially harmful health effects. In addition to being soluble in the aforementioned list, PSF is also readily soluble in a host of less polar solvents by virtue of its lower solubility parameter. These solvents include tetrahydrofuran (THF), 1,4 dioxane, chloroform, dichloromethane, and chlorobenzene. The relatively broad solubility characteristics of PSF have been key in the development of solution-based hollow-fiber spinning processes in the manufacture of polysulfone asymmetric membranes (see Membrane Technology). The solvent list for PES and PPSF is short because of the propensity of these polymers to undergo solvent-induced crystallization in many solvents. When the PES structure contains a small proportion of a second bisphenol comonomer, as in the case of RADEL A (British Petroleum) polyethersulfone, solution stability is much improved over that of PES homopolymer. [Pg.6650]

PE 1 is fairly soluble in a variety of organic solvents such as chloroform and 1,1,2,2-tetrachloroethane. The Mark-Houwink parameters of PE 1 in chloroform at 20°C are [49]... [Pg.439]


See other pages where 1,2,2,2-tetrachloroethane solubility parameter is mentioned: [Pg.129]    [Pg.137]    [Pg.29]    [Pg.273]    [Pg.153]   
See also in sourсe #XX -- [ Pg.28 ]




SEARCH



Solubility paramete

Solubility parameter

Solubility tetrachloroethane

Tetrachloroethanes

© 2024 chempedia.info