Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature jump techniques specificity

The dynamics of intercalation of small molecules with DNA, groove binding and binding to specific sites, such as base pair mismatches have been studied by stopped-flow,23,80 108 temperature jump experiments,26,27,94 109 120 surface plasmon resonance,121 129 NMR,86,130 135 flash photolysis,136 138 and fluorescence correlation spectroscopy.64 The application of the various techniques to study the binding dynamics of small molecules will be analyzed for specific examples of each type of binding. [Pg.186]

Polarographic data yield ki2 = 1.3 X lO W" sec, which agrees well with specific rates of similar reactions shown in Table II. The specific rate kn of the much slower dehydration reaction has been determined by both the temperature and pressure jump methods to be about 0.5 sec at pH 3 and 25 °C with some general acid-base catalysis. While the hydration-dehydration equilibrium itself involves no conductivity change, it is coupled to a protolytic reaction that does, and a pressure jump determination of 32 is therefore possible. In this particular case the measured relaxation time is about 1 sec. The pressure jump technique permits the measurement of chemical relaxation times in the range 50 sec to 50 tisec, and thus complements the temperature jump method on the long end of the relaxation time scale. [Pg.85]

Pressure. Standard atmospheric pressure is defined to be the force exerted by a column of mercury 760-mm high at 0°C. This corresponds to 0.101325 MPa (14.695 psi). Reference or fixed points for pressure caUbration exist and are analogous to the temperature standards cited (23). These points are based on phase changes or resistance jumps in selected materials. For the highest pressures, the most rehable technique is the correlation of the wavelength shift, /SX with pressure of the mby, R, fluorescence line and is determined by simultaneous specific volume measurements on cubic metals... [Pg.20]

The formulation of Section 9.5.1 has served to remove the chemistry from the field equations, replacing it by suitable jump conditions across the reaction sheet. The expansion for small S/l, subsequently serves to separate the problem further into near-field and far-field problems. The domains of the near-field problems extend over a characteristic distance of order S on each side of the reaction sheet. The domains of the far-field problems extend upstream and downstream from those of the near-field problems over characteristic distances of orders from to /. Thus the near-field problems pertain to the entire wrinkled flame, and the far-field problems pertain to the regions of hydrodynamic adjustment on each side of the flame in essentially constant-density turbulent flow. Either matched asymptotic expansions or multiple-scale techniques are employed to connect the near-field and far-field problems. The near-field analysis has been completed for a one-reactant system with allowance made for a constant Lewis number differing from unity (by an amount of order l/P) for ideal gases with constant specific heats and constant thermal conductivities and coefficients of viscosity [122], [124], [125] the results have been extended to ideal gases with constant specific heats and constant Lewis and Prandtl numbers but thermal conductivities that vary with temperature [126]. The far-field analysis has been... [Pg.425]


See other pages where Temperature jump techniques specificity is mentioned: [Pg.46]    [Pg.90]    [Pg.70]    [Pg.218]    [Pg.188]    [Pg.160]    [Pg.160]    [Pg.8137]    [Pg.239]    [Pg.140]    [Pg.204]    [Pg.259]    [Pg.260]    [Pg.424]    [Pg.350]    [Pg.13]    [Pg.292]    [Pg.88]    [Pg.1503]    [Pg.245]    [Pg.350]    [Pg.256]    [Pg.8]    [Pg.155]    [Pg.24]    [Pg.338]   


SEARCH



Specification temperature

Temperature jump

© 2024 chempedia.info