Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Target molecule alcohol

This then is the disconnection corresponding to the reaction. It is the thinking device we use to help us work out a synthesis of t-butyl alcohol. We could of course have broken any other bond in the target molecule such as ... [Pg.4]

Since (A) does not contain any other functional group in addition to the formyl group, one may predict that suitable reaction conditions could be found for all conversions into (A). Many other alternative target molecules can, of course, be formulated. The reduction of (H), for example, may require introduction of a protecting group, e.g. acetal formation. The industrial synthesis of (A) is based upon the oxidation of (E) since 3-methylbutanol (isoamyl alcohol) is a cheap distillation product from alcoholic fermentation ( fusel oils ). The second step of our simple antithetic analysis — systematic disconnection — will now be exemplified with all target molecules of the scheme above. For the sake of brevity we shall omit the syn-thons and indicate only the reagents and reaction conditions. [Pg.198]

The wide scope application of this transformation arises not only from the utility of epoxide compounds but also from the subsequent regiocontrolled and stereocontrolled nucleophilic substitution (ring-opening) reactions of the derived epoxy alcohol. These, through further functionalization, allow access to an impressive array of target molecules in enantiomerically pure form. [Pg.196]

Conjugations can also be brought about by sulfotransferases (SULTs) and glutathi-one-S-transferases (GSTs), both of which exist in a number of isoenzymic forms. Amines and alcohols are sulfate acceptors and SULTs are important in steroid hormone and catecholamine metabolism and like the UGTs require the sulfate to be activated prior to its incorporation into the target molecule (Figure 6.32). In this case, sulfate is activated at the expense of two molecules of ATP to form the final sulfate carrier PAPS O -phosphoadenosine-S -phosphosulfate). [Pg.202]

Penicillin acylase catalyzes the hydrolysis of phenylacetamides and has been used in peptide synthesis for the cleavage of protecting groups [46—47]. In linker (40) developed by Flitsch et al. [41—42] (Scheme 10.8) the group -XR represents the alcohol or amine group of the target molecule. Hydrolysis of the phenylaceta-... [Pg.458]

The final step is to convert the carboxylic acid into a primary alcohol by heating it with lithium aluminium hydride (LiAlH ) dissolved in ether (ethoxyethane). This is a reduction reaction and delivers the target molecule, propan-l-ol. [Pg.72]

The third group of target molecules comprises chiral carboxylic acid and their derivatives esters, amides and nitriles. Enantiomerically pure esters are prepared in an analogous manner to the enantiomerically pure alcohols discussed earlier [i.e. by esterase- or lipase-catalyzed hydrolysis or (trans)esterification]. However, these reactions are not very interesting in the present context of cascade reactions. Amides can be produced by enantioselective ammoniolysis of esters or even the... [Pg.121]

Pearson and Lin (52) developed an elegant approach to the synthesis of optically active ( )-swainsonine (247) from isopropylidene-D-erythrose (242) (Scheme 9.52). Wittig reaction of the acetonide 242 led to the (Z) alkene 252 in 86% yield. The chloro alcohol 252 was converted to the azide 253 in 76% yield, which subsequently underwent 1,3-dipolar cycloaddition, isomerization and hydroboration-oxidation to give the indolizidine 255 in 70% overall yield. Cleavage of the acetonide unit in 255 using 6 N HCl gave the target molecule 247 in 85% yield. [Pg.656]

Figure 3.4 The synthesis of ibuprofen is initiated by a Friedel-Crafts acylation of an aUcyl-substituted benzene ring. The resulting ketone is then reduced to an alcohol with sodium boro-hydride. The alcohol functionality then undergoes a functional group interchange by conversion to a bromide. In turn, this permits the introduction of an additional carbon atom in the form of a nitrile introduced via an 8, 2 nucleophilic displacement. This is then hydrolyzed to give the target molecule. Figure 3.4 The synthesis of ibuprofen is initiated by a Friedel-Crafts acylation of an aUcyl-substituted benzene ring. The resulting ketone is then reduced to an alcohol with sodium boro-hydride. The alcohol functionality then undergoes a functional group interchange by conversion to a bromide. In turn, this permits the introduction of an additional carbon atom in the form of a nitrile introduced via an 8, 2 nucleophilic displacement. This is then hydrolyzed to give the target molecule.
It is clear from the examples in this book that the use of biocatalysis can produce some very cost-effective and environmentally acceptable processes, and the authors anticipate that the use of this technology will increase as synthetic organic chemists realize its value and begin to look for strategic disconnections in the synthetic sequence of new target molecules where a biocatalytic step can be applied to utmost benefit. Thus, biocatalysis should be seen as a routine part of the synthetic toolbox and, in some cases, the reagent of choice for transformations such as the reduction of ketones to chiral alcohols, and not as a technology of last resort when all else has failed. [Pg.343]


See other pages where Target molecule alcohol is mentioned: [Pg.202]    [Pg.208]    [Pg.328]    [Pg.157]    [Pg.226]    [Pg.612]    [Pg.612]    [Pg.1079]    [Pg.270]    [Pg.272]    [Pg.287]    [Pg.8]    [Pg.634]    [Pg.88]    [Pg.533]    [Pg.146]    [Pg.372]    [Pg.1028]    [Pg.132]    [Pg.75]    [Pg.71]    [Pg.60]    [Pg.111]    [Pg.187]    [Pg.453]    [Pg.8]    [Pg.60]    [Pg.165]    [Pg.112]    [Pg.176]    [Pg.668]    [Pg.257]    [Pg.507]    [Pg.202]    [Pg.208]    [Pg.328]    [Pg.11]    [Pg.38]    [Pg.737]   
See also in sourсe #XX -- [ Pg.58 ]




SEARCH



Alcohol molecule

© 2024 chempedia.info