Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Systems of Metal Nitrites with Oxidizers

Aromatic cation-radicals can also react with NOj , giving nitro compounds. Such reactions proceed either with a preliminary prepared cation-radical or starting from nncharged componnd if iodine and silver nitrite are added. As for mechanisms, two of them seem feasible—first, single electron transfer from the nitrite ion to a cation-radical and second, nitration of ArH with the NOj radical. This radical is quantitatively formed when iodine oxidizes silver nitrite in carbon tetrachloride (Neelmeyer 1904). [Pg.255]

Cation-radicals of naphthalene and its homologues, pyrene, or perylene react with NOj ion in AN, giving electron-transfer products, that is, ArH and NOj. The latter radical is not very active in these reactions and nitration takes place only with extremely reactive compounds such as perylene (Eberson and Radner 1985, 1986). This mechanism is seemingly distinctive of compounds with E° less or equal to 1 V in AN (or in other solvents solvating NOj ions sparingly). [Pg.255]

An attempt to combine electrochemical and micellar-catalytic methods is interesting from the point of view of the mechanism of anode nitration of 1,4-dimethoxybenzene with sodinm nitrite (Laurent et al. 1984). The reaction was performed in a mixture of water in the presence of 2% surface-active compounds of cationic, anionic, or neutral nature. It was established that 1,4-dimethoxy-2-nitrobenzene (the product) was formed only in the region of potentials corresponding to simultaneous electrooxidation of the substrate to the cation-radical and the nitrite ion to the nitrogen dioxide radical (1.5 V versus saturated calomel electrode). At potentials of oxidation of the sole nitrite ion (0.8 V), no nitration was observed. Consequently, radical substitution in the neutral substrate does not take place. Two feasible mechanisms remain for addition to the cation-radical form, as follows  [Pg.255]

Micellar catalytic methods were used to operate a choice between these two mechanisms. When an ion-radical has a charge opposite to that of the micelle surface, it is trapped by the micelle (Okamoto et al. 2001). In the presence of a surface-active compound, the aromatic substrate is nitrated in the very depth of a micelle, and the reaction rate depends on the local concentration of the nitrating agent on phase boundaries between the micelle and solution. A positively charged [Pg.255]

For the anode process at comparable conditions, the yield of l,2-dimethoxy-2-nitrobenzene depends distinctly on the electrical natnre of a micelle. Namely, the yields are equal to 30, 40, and 70% for the positively, negatively, and nentrally charged micelles, respectively. The observed micellar effect corroborates the mechanism that inclndes 1,4-dimethoxybenzene cation-radical and nitrogen dioxide radical as reacting species. [Pg.256]


See other pages where Systems of Metal Nitrites with Oxidizers is mentioned: [Pg.255]    [Pg.255]   


SEARCH



Metal oxide systems

Nitrite oxidation

Oxidation systems

Oxidation with nitrite

Oxidative systems

Oxide systems

© 2024 chempedia.info