Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthesis, carboxylic acids lactones

The alkylation of metalated imines, hydrazones, 4,5-dihydrooxazoles, 4,5-dihydroisoxazoles, 5,6-dihydro-4/7-1,2-oxazines and 2,5-dialkoxy-3,6-dihydropyrazines (i.e., azaenolates) is a commonly used method in asymmetric synthesis of enantiomerically enriched aldehydes, ketones, spiroacetals, amines, /J-oxo esters, carboxylic acids, lactones, 1,3-amino alcohols, /(-hydroxy ketones and amino acids. [Pg.969]

Avery direct synthesis of certain lactones can be achieved by heating an alkene, a carboxylic acid, and the Mn(III) salt of the acid. Suggest a mechanism by which this reaction might proceed. [Pg.739]

Fischer s original method for conversion of the nitrile into an aldehyde involved hydrolysis to a carboxylic acid, ring closure to a cyclic ester (lactone), and subsequent reduction. A modern improvement is to reduce the nitrile over a palladium catalyst, yielding an imine intermediate that is hydrolyzed to an aldehyde. Note that the cyanohydrin is formed as a mixture of stereoisomers at the new chirality center, so two new aldoses, differing only in their stereochemistry at C2, Tesult from Kiliani-Fischer synthesis. Chain extension of D-arabinose, for example, yields a mixture of D-glucose and o-mannose. [Pg.994]

Curran s synthesis of ( )-A9(l2)-capnellene [( )-2] is detailed in Schemes 30 and 31. This synthesis commences with the preparation of racemic bicyclic vinyl lactone 147 from ( )-norbomenone [( )-145] by a well-known route.61 Thus, Baeyer-Villiger oxidation of (+)-145 provides unsaturated bicyclic lactone 146, a compound that can be converted to the isomeric fused bicyclic lactone 147 by acid-catalyzed rearrangement. Reaction of 147 with methylmagne-sium bromide/CuBr SMe2 in THF at -20 °C takes the desired course and affords unsaturated carboxylic acid 148 in nearly quantitative yield. Iodolactonization of 148 to 149, followed by base-induced elimination, then provides the methyl-substituted bicyclic vinyl lactone 150 as a single regioisomer in 66% overall yield from 147. [Pg.413]

The addition of Grignard reagents to aldehydes, ketones, and esters is the basis for the synthesis of a wide variety of alcohols, and several examples are given in Scheme 7.3. Primary alcohols can be made from formaldehyde (Entry 1) or, with addition of two carbons, from ethylene oxide (Entry 2). Secondary alcohols are obtained from aldehydes (Entries 3 to 6) or formate esters (Entry 7). Tertiary alcohols can be made from esters (Entries 8 and 9) or ketones (Entry 10). Lactones give diols (Entry 11). Aldehydes can be prepared from trialkyl orthoformate esters (Entries 12 and 13). Ketones can be made from nitriles (Entries 14 and 15), pyridine-2-thiol esters (Entry 16), N-methoxy-A-methyl carboxamides (Entries 17 and 18), or anhydrides (Entry 19). Carboxylic acids are available by reaction with C02 (Entries 20 to 22). Amines can be prepared from imines (Entry 23). Two-step procedures that involve formation and dehydration of alcohols provide routes to certain alkenes (Entries 24 and 25). [Pg.638]

The two major subunits were coupled by a Suzuki reaction in Step H-3. The Multistep Syntheses synthesis was then completed by reductive opening of the 1,3-dioxane ring, oxidation of the terminal alcohol to the carboxylic acid, carbamoylation, deprotection, and lactonization. [Pg.1236]

A common procedure in C-C-bond formation is the aldol addition of enolates derived from carboxylic acid derivatives with aldehydes to provide the anion of the [5-hydroxy carboxylic acid derivative. If one starts with an activated acid derivative, the formation of a [Mac lone can follow. This procedure has been used by the group of Taylor [137] for the first synthesis of the l-oxo-2-oxa-5-azaspiro[3.4]octane framework. Schick and coworkers have utilized the method for their assembly of key intermediates for the preparation of enzyme inhibitors of the tetrahydrolipstatin and tetrahydroesterastin type [138]. Romo and coworkers used a Mukaiyama aldol/lac-tonization sequence as a concise and direct route to 3-lactones of type 2-253, starting from different aldehydes 2-251 and readily available thiopyridylsilylketenes 2-252 (Scheme 2.60) [139]. [Pg.86]

Notably, the Mukaiyama aldol/lactonizahon approach has been used in the total synthesis of panclicin D (2-258) [139b,c] and okinonellin B (2-261) (Scheme 2.61) [139d]. In the synthesis of 2-258, aldehyde 2-254 and the ketene acetal 2-255 were used to prepare the 3-lactone 2-256 with high simple and induced diastereoselectivity. There follows an esterification with the carboxylic acid 2-257. For the synthesis of 2-261, the aldehydes 2-259 and 2-252b were employed as substrates leading initially to the (1-lac tone 2-260. [Pg.87]

A direct catalytic conversion of esters, lactones, and carboxylic acids to oxazolines was efficiently achieved by treatment with amino alcohols in the presence of the tetranuclear zinc cluster Zn4(0C0CF3)60 as catalyst, essential for condensation and cyclodehydration reactions. For example, the use of (5)-valinol allowed the easy synthesis of oxazolines 125 and 126 in satisfactory yields <06CC2711>. A one-pot direct preparation of various 2-substituted oxazolines (as well as benzoxazoles and oxadiazoles) was also performed from carboxylic acids and amino alcohols (or aminophenols or benzhydrazide) using Deoxo-Fluor reagent <06TL6497>. [Pg.303]

The photolysis of carboxylic acids and derivatives as lactones, esters and anhydrides can yield decarboxylated products 253>. This reaction has been utilized in the synthesis of a-lactones from cyclic diacyl peroxides 254) (2.34) and in the synthesis of [2,2]paracyclophane by bis-decarboxylation of a lactone precursor (2.35) 255). This latter product was also obtained by photoinduced desulfurization of the analogous cyclic sulfide in the presence of triethyl phosphite 256). [Pg.31]

The chemistry of a-haloketones, a-haloaldehydes and a-haloimines Nitrones, nitronates and nitroxides Crown ethers and analogs Cyclopropane derived reactive intermediates Synthesis of carboxylic acids, esters and their derivatives The silicon-heteroatom bond Syntheses of lactones and lactams The syntheses of sulphones, sulphoxides and cyclic sulphides... [Pg.1058]

We were interested in applications of the high level of stereocontrol associated with the asymmetric Birch reduction-alkylation to problems in acyclic and heterocyclic synthesis. The pivotal disconnection of the six-membered ring is accomplished by utilization of the Baeyer-Villiger oxidation (Scheme 7). Treatment of cyclohexanones 25a and 25b with MCPBA gave caprolactone amides 26a and 26b with complete regiocon-trol. Acid-catalyzed transacylation gave the butyrolactone carboxylic acid 27 from 26a and the bis-lactone 28 from 26b cyclohexanones 31a and 31b afforded the diastereomeric lactones 29 and 30. ... [Pg.4]

Carbonylation is one of the most important reactions leading to C-C bond formation. Direct synthesis of carbonyl compounds with CO gives rise to carboxylic acids and their derivatives, such as esters, amides, lactones, lactams etc. The process can be represented by the simple reactions of Scheme 5.1. [Pg.147]

Miki and Hachiken reported a total synthesis of murrayaquinone A (107) using 4-benzyl-l-ferf-butyldimethylsiloxy-4fT-furo[3,4-f>]indole (854) as an indolo-2,3-quinodimethane equivalent for the Diels-Alder reaction with methyl acrylate (624). 4-Benzyl-3,4-dihydro-lfT-furo[3,4-f>]indol-l-one (853), the precursor for the 4H-furo[3,4-f>]indole (854), was prepared in five steps and 30% overall yield starting from dimethyl indole-2,3-dicarboxylate (851). Alkaline hydrolysis of 851 followed by N-benzylation of the dicarboxylic acid with benzyl bromide and sodium hydride in DMF, and treatment of the corresponding l-benzylindole-2,3-dicarboxylic acid with trifluoroacetic anhydride (TFAA) gave the anhydride 852. Reduction of 852 with sodium borohydride, followed by lactonization of the intermediate 2-hydroxy-methylindole-3-carboxylic acid with l-methyl-2-chloropyridinium iodide, led to the lactone 853. The lactone 853 was transformed to 4-benzyl-l-ferf-butyldimethylsiloxy-4H-furo[3,4- 7]indole 854 by a base-induced silylation. Without isolation, the... [Pg.258]


See other pages where Synthesis, carboxylic acids lactones is mentioned: [Pg.336]    [Pg.145]    [Pg.332]    [Pg.340]    [Pg.140]    [Pg.168]    [Pg.243]    [Pg.259]    [Pg.725]    [Pg.795]    [Pg.44]    [Pg.815]    [Pg.110]    [Pg.1417]    [Pg.815]    [Pg.1002]    [Pg.303]    [Pg.158]    [Pg.59]    [Pg.139]    [Pg.35]    [Pg.104]    [Pg.106]    [Pg.89]    [Pg.125]    [Pg.113]    [Pg.131]    [Pg.197]    [Pg.156]    [Pg.271]   
See also in sourсe #XX -- [ Pg.43 , Pg.44 , Pg.46 ]




SEARCH



8-lactone synthesis

Carboxylate, synthesis

Carboxylic acids 7-lactonization

Carboxylic synthesis

Lactones carboxylation

Lactones carboxylic acids

Lactones synthesis

© 2024 chempedia.info