Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface free liquid

The total free energy of the system is then made up of the molar free energy times the total number of moles of the liquid plus G, the surface free energy per unit area, times the total surface area. Thus... [Pg.48]

The surface free energy can be regarded as the work of bringing a molecule from the interior of a liquid to the surface, and that this work arises from the fact that, although a molecule experiences no net forces while in the interior of the bulk phase, these forces become unbalanced as it moves toward the surface. As discussed in connection with Eq. Ill-IS and also in the next sections, a knowledge of the potential function for the interaction between molecules allows a calculation of the total surface energy if this can be written as a function of temperature, the surface free energy is also calculable. [Pg.56]

A case can be made for the usefulness of surface tension as a concept even in the case of a normal liquid-vapor interface. A discussion of this appears in papers by Brown [33] and Gurney [34]. The informal practice of using surface tension and surface free energy interchangeably will be followed in this text. [Pg.57]

In Chapter III, surface free energy and surface stress were treated as equivalent, and both were discussed in terms of the energy to form unit additional surface. It is now desirable to consider an independent, more mechanical definition of surface stress. If a surface is cut by a plane normal to it, then, in order that the atoms on either side of the cut remain in equilibrium, it will be necessary to apply some external force to them. The total such force per unit length is the surface stress, and half the sum of the two surface stresses along mutually perpendicular cuts is equal to the surface tension. (Similarly, one-third of the sum of the three principal stresses in the body of a liquid is equal to its hydrostatic pressure.) In the case of a liquid or isotropic solid the two surface stresses are equal, but for a nonisotropic solid or crystal, this will not be true. In such a case the partial surface stresses or stretching tensions may be denoted as Ti and T2-... [Pg.260]

The change in surface free energy, AG accompanying a small displacement of the liquid such that the change in area of solid covered,, is... [Pg.353]

The integral A/, while expressible in terms of surface free energy differences, is defined independently of such individual quantities. A contact angle situation may thus be viewed as a consequence of the ability of two states to coexist bulk liquid and thin film. [Pg.375]

Returning to more surface chemical considerations, most literature discussions that relate adhesion to work of adhesion or to contact angle deal with surface free energy quantities. It has been pointed out that structural distortions are generally present in adsorbed layers and must be present if bulk liquid adsorbate forms a finite contact angle with the substrate (see Ref. 115). Thus both the entropy and the energy of adsorption are important (relative to bulk liquid). The... [Pg.456]

The basic phenomenon involved is that particles of ore are carried upward and held in the froth by virtue of their being attached to an air bubble, as illustrated in the inset to Fig. XIII-4. Consider, for example, the gravity-free situation indicated in Fig. XIII-5 for the case of a spherical particle. The particle may be entirely in phase A or entirely in phase B. Alternatively, it may be located in the interface, in which case both 7sa nnd 7sb contribute to the total surface free energy of the system. Also, however, some liquid-liquid interface has been eliminated. It may be shown (see Problem XIII-12) that if there is a finite contact angle, 0sab> the stable position of the particle is at the interface, as shown in Fig. XIII-5Z>. Actual measured detachment forces are in the range of 5 to 20 dyn [60]. [Pg.473]

The cleaning process proceeds by one of three primary mechanisms solubilization, emulsification, and roll-up [229]. In solubilization the oily phase partitions into surfactant micelles that desorb from the solid surface and diffuse into the bulk. As mentioned above, there is a body of theoretical work on solubilization [146, 147] and numerous experimental studies by a variety of spectroscopic techniques [143-145,230]. Emulsification involves the formation and removal of an emulsion at the oil-water interface the removal step may involve hydrodynamic as well as surface chemical forces. Emulsion formation is covered in Chapter XIV. In roll-up the surfactant reduces the contact angle of the liquid soil or the surface free energy of a solid particle aiding its detachment and subsequent removal by hydrodynamic forces. Adam and Stevenson s beautiful photographs illustrate roll-up of lanoline on wood fibers [231]. In order to achieve roll-up, one requires the surface free energies for soil detachment illustrated in Fig. XIII-14 to obey... [Pg.485]

The simplest approach to understanding the reduced melting point in nanocrystals relies on a simple thennodynamic model which considers the volume and surface as separate components. Wliether solid or melted, a nanocrystal surface contains atoms which are not bound to interior atoms. This raises the net free energy of the system because of the positive surface free energy, but the energetic cost of the surface is higher for a solid cluster than for a liquid cluster. Thus the free-energy difference between the two phases of a nanocrystal becomes smaller as the cluster size... [Pg.2912]

In vacuum drying or other processes containing atmospheres of 100 percent vapor, the temperature of liquid vaporization will equal or exceed the saturation temperature of the liquid at the system pressure. (When a free liquid or wetted surface is present, drying will occur at the saturation temperature, just as free water at I0I.325 kPa vaporizes in a 100 percent steam atmosphere at I00°C.)... [Pg.1175]

The simulated free surface of liquid water is relatively stable for several nanoseconds [68-72] because of the strong hydrogen bonds formed by liquid water. The density decrease near the interface is smooth it is possible to describe it by a hyperbolic tangent function [70]. The width of the interface, measured by the distance between the positions where the density equals 90% and 10% of the bulk density, is about 5 A at room temperature [70,71]. The left side of Fig. 3 shows a typical density profile of the free interface for the TIP4P water model [73]. [Pg.355]

The effects of fluorination on solid-surface free energies parallel the liquid trends Perfluormated polymers have the lowest cntical surface tensions, which directly relate to their antistick properties [19], but substimtion of fluorine by hydrogen or by the more polarizable ehloiine atom markedly raises their surface free energy. [Pg.983]

We express the altered concentration in terms of the adsorption excess. If all the adsorbed substance were contained to the extent of k gr. per cm.2 on a superficial layer of zero thickness and surface total mass present in the volume Y would be m = V + kto. The layer of altered concentration must, however, have a certain thickness. We will therefore imagine a plate 2 placed in front of the surface and parallel to it, and define the adsorption excess as the concentration in the included layer minus the concentration in the free liquid. That this result is independent of the arbitrarily chosen thickness is easily proved when we remember that the problem is exactly the same as that of finding the change of concentration around an electrode in the determination of the transport number of an ion by Hittorf s method. [Pg.435]

Pasoi in. .. F, Proc. Kov. Soc. A 182 (1943) 75. Eva X>ration from a plane free liquid surface into a turbulent air stream. [Pg.656]

State the assumptions made in the penetration theory for the absorption of a pure gas inlo a liquid. The surface of an initially solute-free liquid is suddenly exposed to a soluble gas and the liquid is sufficiently deep for no solute to have time to reach the bottom of the liquid. Starting with Hick s second law ol diffusion obtain an expression for (i) the concentration, and (ii) the muss transfer rate at a time t and a depth v below the surface. [Pg.860]

When the sphere and plane are separated by a small distance D, as shown in Figure 4, then the force due to the Laplace pressure in the liquid bridge may be calculated by considering how the total surface free energy of the system changes with separation [1] ... [Pg.22]

However, on rigid substrates, the growth of dry zones is accompanied by a rim of excess liquid with width X (Fig. 10). As the dewetting proceeds, X increases. For short times and < K, the growth of dry patches is controlled only by surface tension forces and the dewetting speed is constant. A constant dewetting speed of 8 mm-s has been measured when a liquid film of tricresyl phosphate (TCP) dewets on Teflon PFA, a hard fluoropoly-mer of low surface free energy (p. = 250 MPa, 7 = 20 mJ-m ). [Pg.304]

In a small-diameter capillary tube, wetting forces produce a distortion of the free liquid surface, which takes a curvature. Across a curved liquid surface, a difference of pressure exists and the variation of pressure across the surface is the Laplace or capillary pressure, given by ... [Pg.310]

Influence on Electrolyte Conductivity In porous separators the ionic current passes through the liquid electrolyte present in the separator pores. Therefore, the electrolyte s resistance in the pores has to be calculated for known values of porosity of the separator and of conductivity, o, of the free liquid electrolyte. Such a calculation is highly complex in the general case. Consider the very simple model where a separator of thickness d has cylindrical pores of radius r which are parallel and completely electrolyte-filled (Fig. 18.2). Let / be the pore length and N the number of pores (all calculations refer to the unit surface area of the separator). The ratio p = Ud (where P = cos a > 1) characterizes the tilt of the pores and is called the tortuosity factor of the pores. The total pore volume is given by NnrH, the porosity by... [Pg.332]


See other pages where Surface free liquid is mentioned: [Pg.5]    [Pg.51]    [Pg.93]    [Pg.239]    [Pg.259]    [Pg.267]    [Pg.354]    [Pg.358]    [Pg.1696]    [Pg.2615]    [Pg.417]    [Pg.234]    [Pg.2016]    [Pg.120]    [Pg.22]    [Pg.34]    [Pg.67]    [Pg.430]    [Pg.41]    [Pg.532]    [Pg.615]    [Pg.723]    [Pg.542]    [Pg.315]    [Pg.229]    [Pg.58]    [Pg.178]    [Pg.110]    [Pg.565]    [Pg.334]   
See also in sourсe #XX -- [ Pg.118 ]




SEARCH



Free surface

Liquid surface

Liquidous surface

Liquids, surface free energy data

Solid-liquid interface surface Gibbs free energy

Solid-liquid interface surface free energy

Surface free energies liquids

The free surface of pure liquids

The nematic liquid crystal free surface

© 2024 chempedia.info