Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Superelectrophiles with deactivated arenes

Although electrophilic reactions involving dications with deactivated arenes may suggest the formation of superelectrophilic intermediates, there are a number of well-known examples of monocationic electrophiles that are capable of reacting with benzene or with deactivated aromatic compounds. For example, 2,2,2-trifluoroacetophenone condenses with benzene in triflic acid (eq 12).13 A similar activation is likely involved in the H2SO4 catalyzed reaction of chloral (or its hydrate) with chlorobenzene giving DDT (eq 13). [Pg.21]

Friedel-Crafts type reactions of strongly deactivated arenes have been the subject of several recent studies indicating involvement of superelectrophilic intermediates. Numerous electrophilic aromatic substitution reactions only work with activated or electron-rich arenes, such as phenols, alkylated arenes, or aryl ethers.5 Since these reactions involve weak electrophiles, aromatic compounds such as benzene, chlorobenzene, or nitrobenzene, either do not react, or give only low yields of products. For example, electrophilic alkylthioalkylation generally works well only with phenolic substrates.6 This can be understood by considering the resonance stabilization of the involved thioalkylcarbenium ion and the delocalization of the electrophilic center (eq 4). With the use of excess Fewis acid, however, the electrophilic reactivity of the alkylthiocarbenium ion can be... [Pg.19]

Related classes of gitonic superelectrophiles are the previously mentioned protoacetyl dications and activated acyl cationic electrophiles. The acyl cations themselves have been extensively studied by theoretical and experimental methods,22 as they are intermediates in many Friedel-Crafts reactions. Several types of acyl cations have been directly observed by spectroscopic methods and even were characterized by X-ray crystal structure analysis. Acyl cations are relative weak electrophiles as they are effectively stabilized by resonance. They are capable of reacting with aromatics such as benzene and activated arenes, but do not generally react with weaker nucleophiles such as deactivated arenes or saturated alkanes. [Pg.153]

Reaction of acetal 104 with benzene in the presence of CF3SO3H leads to product 107 in high yield. This conversion involves formation of the ammonium-carboxonium dication (105), a reactive dication possessing some 1,3-dicationic character. Reaction with benzene and subsequent loss of methanol generates another reactive dication (106), which then gives the product. The superelectrophilic character of the ammonium-carboxonium dications is indicated by their reactions with moderately deactivated arenes, such as o-dichlorobenzene. [Pg.205]


See other pages where Superelectrophiles with deactivated arenes is mentioned: [Pg.247]    [Pg.591]    [Pg.639]    [Pg.657]    [Pg.18]    [Pg.142]    [Pg.173]    [Pg.207]    [Pg.193]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Deactivation, arenes

Superelectrophiles

Superelectrophilicity

With arenes

© 2024 chempedia.info