Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfonylureas selective toxicity

The selective toxicity of sulfonylureas to certain weeds without damage to the cereal crop arises from their rapid metabolism in the crop plant to inactive compounds, whereas in sensitive weeds the metabolism is much slower. The very high herbicidal activity suggests a specific biochemical mode of action, which is concluded to be the inhibition of plant cell division. Sulfonylureas block the enzyme acetolacetate synthase (ALS), which catalyses the biosynthesis of the essential branched chain amino acids valine, leucine and isoleucine. [Pg.239]

The sulfonylurea herbicides are a new family of chemical compounds, some of which are selectively toxic to weeds but not to crops. The selectivity of the sulfonylureas results from their metabolism to non-toxic compounds by particular crops, but not by weeds. In addition to efficient weed control, the sulfonylurea herbicides provide environmentally desirable properties such as field use rates as low as two grams/hectare and very low toxicity to mammals. The high specificity of the herbicides for their molecular target contributes to both of these properties. In addition, the low toxicity to mammals results from their lack of the target enzyme for the herbicides. Sulfonylureas inhibit the enzyme acetolactate synthase (ALS), also known as acetohydroxyacid synthase (AHAS), which catalyzes the first common step in the biosynthesis of the branched chain amino acids leucine, isoleucine and valine. In mammals these are three of the essential amino acids which must be obtained through dietary intake because the biosynthetic pathway for the branched chain amino acids is not present. The prototype structure of a sulfonylurea herbicide is shown in Figure 1. [Pg.460]

Second, a key enzyme or receptor in the pathway should be identified as the target. It is best to select enzymes whose products are important for several functions in the species. Cellular response to such a metabolic blockade should also be considered (e.g., cascading effects). Often end-product limitation results in more metabolites entering the pathway. After sufficient substrate accumulation, catalysis may occur even in the presence of an inhibitor (10). However, accumulation of toxic intermediates would prevent tTTTs cellular response and lead to death. Again using sulfonylureas as an example, acetolactate synthase is a common enzyme in the pathway for two essential amino acids rather than just one. Also, inhibition of acetolactate synthase leads to high levels of a-ketobutyrate which is thought to have deleterious effects (11). [Pg.121]

Toxicity Data and Tolerances in Drinking Water of Selected Phenylurea and Sulfonylurea Herbicides... [Pg.941]


See other pages where Sulfonylureas selective toxicity is mentioned: [Pg.39]    [Pg.29]    [Pg.542]    [Pg.190]    [Pg.199]    [Pg.32]   
See also in sourсe #XX -- [ Pg.5 , Pg.264 ]




SEARCH



Selective toxicity/selectivity

Selectivity sulfonylurea

Sulfonylureas

Sulfonylureas toxicity

Toxicant selective

Toxicity selective

© 2024 chempedia.info