Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substrate shuttles, mitochondria

Under aerobic conditions, the hydrogen atoms of NtUDH are oxidised within the mitochondrion pyruvate is also oxidised in the mitochondrion (Figure 9.15). However, NADH cannot be transported across the inner mitochondrial membrane, and neither can the hydrogen atoms themselves. This problem is overcome by means of a substrate shuttle. In principle, this involves a reaction between NADH and an oxidised substrate to produce a reduced product in the cytosol, followed by transport of the reduced product into the mitochondrion, where it is oxidised to produce hydrogen atoms or electrons, for entry into the electron transfer chain. Finally, the oxidised compound is transported back into the cytosol. The principle of the shuttle is shown in Figure 9.16. [Pg.191]

Inside the inner membrane of a mitochondrion is a viscous region known as the matrix (Fig. 1-9). Enzymes of the tricarboxylic acid (TCA) cycle (also known as the citric acid cycle and the Krebs cycle), as well as others, are located there. For substrates to be catabolized by the TCA cycle, they must cross two membranes to pass from the cytosol to the inside of a mitochondrion. Often the slowest or rate-limiting step in the oxidation of such substrates is their entry into the mitochondrial matrix. Because the inner mitochondrial membrane is highly impermeable to most molecules, transport across the membrane using a carrier or transporter (Chapter 3, Section 3.4A) is generally invoked to explain how various substances get into the matrix. These carriers, situated in the inner membrane, might shuttle important substrates from the lumen between the outer and the inner mitochondrial membranes to the matrix. Because of the inner membrane, important ions and substrates in the mitochondrial matrix do not leak out. Such permeability barriers between various subcellular compartments improve the overall efficiency of a cell. [Pg.24]

Mitochondrial P-oxidation of long-chain fatty acids is the major source of energy production in man. The mitochondrial inner membrane is impermeable to long chain fatty acids or their CoA esters whereas acylcamitines are transported. Three different gene products are involved in this carnitine dependent transport shuttle carnitine palmi-toyl transferase I (CPT I), carnitine acyl-camitine carrier (CAC) and carnitine palmitoyl transferase II (CPT II). The first enzyme (CPT I) converts fatty acyl-CoA esters to their carnitine esters which are subsequently translocated across the mitochondrial inner membrane in exchange for free carnitine by the action of the carnitine acyl-camitine carrier (CAC). Once inside the mitochondrion, CPT II reconverts the carnitine ester back to the CoA ester which can then serve as a substrate for the P-oxidation spiral. [Pg.347]


See other pages where Substrate shuttles, mitochondria is mentioned: [Pg.351]    [Pg.99]    [Pg.402]    [Pg.159]    [Pg.309]   
See also in sourсe #XX -- [ Pg.136 ]




SEARCH



Shuttles

Shuttling

Substrate shuttles

© 2024 chempedia.info