Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substitution reactions, transition

Nitromethane, the weakest known ligand for transition metal ions, is readily replaced by other weak ligands such as esters, aldehydes, ethers, and ketones. Using this ligand substitution reaction, transition metal solvates of acetone may be prepared. [Pg.114]

Electrophilic substitution reactions of unsubstituted quinoxaline or phenazine are unusual however, in view of the increased resonance possibilities in the transition states leading to the products one would predict that electrophilic substitution should be more facile than with pyrazine itself (c/. the relationship between pyridine and quinoline). In the case of quinoxaline, electron localization calculations (57JCS2521) indicate the highest electron density at positions 5 and 8 and substitution would be expected to occur at these positions. Nitration is only effected under forcing conditions, e.g. with concentrated nitric acid and oleum at 90 °C for 24 hours a 1.5% yield of 5-nitroquinoxaline (19) is obtained. The major product is 5,6-dinitroquinoxaline (20), formed in 24% yield. [Pg.163]

Rate data are also available for the solvolysis of l-(2-heteroaryl)ethyl acetates in aqueous ethanol. Side-chain reactions such as this, in which a delocalizable positive charge is developed in the transition state, are frequently regarded as analogous to electrophilic aromatic substitution reactions. In solvolysis the relative order of reactivity is tellurienyl> furyl > selenienyl > thienyl whereas in electrophilic substitutions the reactivity sequence is furan > tellurophene > selenophene > thiophene. This discrepancy has been explained in terms of different charge distributions in the transition states of these two classes of reaction (77AHC(21)119>. [Pg.69]

Substitution reactions by the ionization mechanism proceed very slowly on a-halo derivatives of ketones, aldehydes, acids, esters, nitriles, and related compounds. As discussed on p. 284, such substituents destabilize a carbocation intermediate. Substitution by the direct displacement mechanism, however, proceed especially readily in these systems. Table S.IS indicates some representative relative rate accelerations. Steric effects be responsible for part of the observed acceleration, since an sfp- caibon, such as in a carbonyl group, will provide less steric resistance to tiie incoming nucleophile than an alkyl group. The major effect is believed to be electronic. The adjacent n-LUMO of the carbonyl group can interact with the electnai density that is built up at the pentacoordinate carbon. This can be described in resonance terminology as a contribution flom an enolate-like stmeture to tiie transition state. In MO terminology,.the low-lying LUMO has a... [Pg.301]

Substitution, addition, and group transfer reactions can occur intramolecularly. Intramolecular substitution reactions that involve hydrogen abstraction have some important synthetic applications, since they permit functionalization of carbon atoms relatively remote from the initial reaction site. ° The preference for a six-membered cyclic transition state in the hydrogen abstraction step imparts position selectivity to the process ... [Pg.718]

Monomeric thiazyl halides can be stabilized by coordination to transition metals and a large number of such complexes are known (Section 7.5). In addition, NSX monomers undergo several types of reactions that can be classified as follows (a) reactions involving the n-system of the N=S bond (b) reactions at the nitrogen centre (c) nucleophilic substitution reactions (d) halide abstraction, and (e) halide addition. Examples of each type of behaviour are illustrated below. [Pg.141]

Probably the most important development of the past decade was the introduction by Brown and co-workers of a set of substituent constants,ct+, derived from the solvolysis of cumyl chlorides and presumably applicable to reaction series in which a delocalization of a positive charge from the reaction site into the aromatic nucleus is important in the transition state or, in other words, where the importance of resonance structures placing a positive charge on the substituent - -M effect) changes substantially between the initial and transition (or final) states. These ct+-values have found wide application, not only in the particular side-chain reactions for which they were designed, but equally in electrophilic nuclear substitution reactions. Although such a scale was first proposed by Pearson et al. under the label of and by Deno et Brown s systematic work made the scale definitive. [Pg.211]

Some cations with an octahedral-site preference (such as Ni2+, Co3+, and Cr3+) are expected to occupy the 16d sites of the spinel with Mn, whereas cations with a strong tetrahedral-site preference (such as Zn2+) are expected to occupy the 8a sites and to dislodge corresponding lithium ions into the 16d sites. In cases where Mn is substituted by transition metal ions (such as Co, Ni, and Cr) that can partake in the electrochemical reaction, voltage plateaus between 4 and 5V have been observed [135, 136],... [Pg.312]

Though thermally stable, rhodium ammines are light sensitive and irradiation of such a complex at the frequency of a ligand-field absorption band causes substitution reactions to occur (Figure 2.47) [97]. The charge-transfer transitions occur at much higher energy, so that redox reactions do not compete. [Pg.120]

Ligand substitution reactions at low-valent four-, five- and six-coordinate transition metal centres. J. A. S. Howell and P. M, Burkinshaw, Chem. Rev., 1983, 83, 557-599 (468). [Pg.62]

One of the commonest reactions in the chemistry of transition-metal complexes is the replacement of one ligand by another ligand (Fig. 9-3) - a so-called substitution reaction. These reactions proceed at a variety of rates, the half-lives of which may vary from several days for complexes of rhodium(iii) or cobalt(m) to about a microsecond with complexes of titanium(iii). [Pg.186]

As already mentioned, complexes of chromium(iii), cobalt(iii), rhodium(iii) and iridium(iii) are particularly inert, with substitution reactions often taking many hours or days under relatively forcing conditions. The majority of kinetic studies on the reactions of transition-metal complexes have been performed on complexes of these metal ions. This is for two reasons. Firstly, the rates of reactions are comparable to those in organic chemistry, and the techniques which have been developed for the investigation of such reactions are readily available and appropriate. The time scales of minutes to days are compatible with relatively slow spectroscopic techniques. The second reason is associated with the kinetic inertness of the products. If the products are non-labile, valuable stereochemical information about the course of the substitution reaction may be obtained. Much is known about the stereochemistry of ligand substitution reactions of cobalt(iii) complexes, from which certain inferences about the nature of the intermediates or transition states involved may be drawn. This is also the case for substitution reactions of square-planar complexes of platinum(ii), where study has led to the development of rules to predict the stereochemical course of reactions at this centre. [Pg.187]

It will not have escaped the reader s attention that the kinetically inert complexes are those of (chromium(iii)) or low-spin d (cobalt(iii), rhodium(iii) or iridium(iii)). Attempts to rationalize this have been made in terms of ligand-field effects, as we now discuss. Note, however, that remarkably little is known about the nature of the transition state for most substitution reactions. Fortunately, the outcome of the approach we summarize is unchanged whether the mechanism is associative or dissociative. [Pg.187]

Reutov, O. A., The mechanisms of the substitution reactions of non-transition metal organometallic compounds, J. Organomet. Chem. 100, 219 (1975). [Pg.64]


See other pages where Substitution reactions, transition is mentioned: [Pg.375]    [Pg.375]    [Pg.109]    [Pg.114]    [Pg.133]    [Pg.975]    [Pg.2]    [Pg.218]    [Pg.169]    [Pg.291]    [Pg.689]    [Pg.298]    [Pg.557]    [Pg.565]    [Pg.566]    [Pg.566]    [Pg.975]    [Pg.232]    [Pg.287]    [Pg.185]    [Pg.320]    [Pg.392]    [Pg.65]    [Pg.166]    [Pg.236]    [Pg.114]    [Pg.98]    [Pg.10]    [Pg.186]    [Pg.187]    [Pg.194]    [Pg.120]   


SEARCH



Electrophilic aromatic substitution reactions transition state modeling

Ligand substitution reactions transition metal complexes

Main group-transition metal cluster substitution reactions

Photochemical substitution reactions transition metal complexes

Substitution reactions solvent-assisted transition state

Substitution reactions transition metal-catalyzed vinylic

Substitution reactions, transition metal complexes

Transition Metal-Catalyzed Aromatic Substitution Reactions

Transition metal clusters substitution reactions

Transition metal ions ligand substitution reactions

Transition states in substitution reactions

Transition states substitution reactions

Transition-Metal-Catalyzed Substitution Reactions

Transition-metal-catalyzed reactions allylic substitution

Trigonal bipyramidal transition state in octahedral substitution reactions

Trigonal bipyramidal transition state in square planar substitution reactions

Vinylic substitution reactions, transition

© 2024 chempedia.info