Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substituents acid/base

Reactions that occur with the development of an electron deficiency, such as aromatic electrophilic substitutions, are best correlated by substituent constants based on a more appropriate defining reaction than the ionization of benzoic acids. Brown and Okamoto adopted the rates of solvolysis of substituted phenyldimeth-ylcarbinyl chlorides (r-cumyl chlorides) in 90% aqueous acetone at 25°C to define electrophilic substituent constants symbolized o-. Their procedure was to establish a conventional Hammett plot of log (.k/k°) against (t for 16 /wcra-substituted r-cumyl chlorides, because meta substituents cannot undergo significant direct resonance interaction with the reaction site. The resulting p value of —4.54 was then used in a modified Hammett equation. [Pg.321]

These constants, K toK/, may be estimated by use of the Hammett equation. Estimation of 1 and K 4 involves application of the methods outlined in Section II, A, i.e., application of substituent constants for and N+H to the Hammett equation for the acid-base equilibria of benzoic acids. Estimation of A2 and involves application of the method used in Section III,A, i.e., the p-value for the basicity of substituted pyridines, with cr-values for COOH and COO . Provided the necessary a- and p-values are known, this procedure permits the calculation of four independent, or virtually independent, estimates of Krp. A check on the method is available from the relationships shown in Eq. (16) which is readily obtained by multiplication of Eq. (12) and (14) and of Eq. (13) and (15). [Pg.258]

More recently considered candidates are large molecular anions with delocalized anionic charge, which offer low lattice energies, relatively small ion-ion interaction, and hence sufficient solubility and relatively large conductivity. Delocalization of the charge is achieved by electron-with drawing substituents such as -F or - CF3. Furthermore, these anions show a good electrochemical stability to oxidation. In contrast to Lewis acid-based salts they are chemically more stable with various solvents and often also show excellent thermal stability. [Pg.462]

For arene- and heteroarenediazonium ions with substituents that are subject to their own acid-base equilibria the situation is more complex. For example, the hydroxy group of the 4-hydroxybenzenediazonium ion has a pAfa value of 3.40 (Lewis and Johnson, 1959) whereas the 2-hydroxy-5-sulfo-benzenediazonium zwit-terion has a pATa value of only —0.04 (Jermini et al., 1970). The 0 group of the conjugate base greatly reduces the acidity of the diazonio group, as indicated by the mesomeric quinonediazide structure in Scheme 5-13. [Pg.95]

Hammett equation(s) 78, 93, 148ff., 151 f., 153ff., 167f., 190, 193, 196, 297, 299, 308, 312, 375, 381, 392, see also Dual substituent parameter, and Quantitative structure-reactivity relationships Hammond postulate, in additions of nucleophiles to diazonium ions 157 Hard and soft acids/bases principle (Pearson) 49, 54, 109... [Pg.450]

Ion exchangers are polymer electrolytes prepared a priori as insoluble solids (salts, acids, bases hydrated, possibly gel-Uke). Their polymer backbone is three-dimensional. Many are polyvinyl compounds (substituted polyethylenes) having the general formula [-CH2-CXH-] , where different substituents X lead to rather different products ... [Pg.451]

Carbonyl reactions are extremely important in chemistry and biochemistry, yet they are often given short shrift in textbooks on physical organic chemistry, partly because the subject was historically developed by the study of nucleophilic substitution at saturated carbon, and partly because carbonyl reactions are often more difhcult to study. They are generally reversible under usual conditions and involve complicated multistep mechanisms and general acid/base catalysis. In thinking about carbonyl reactions, 1 find it helpful to consider the carbonyl group as a (very) stabilized carbenium ion, with an O substituent. Then one can immediately draw on everything one has learned about carbenium ion reactivity and see that the reactivity order for carbonyl compounds ... [Pg.4]

LaBarbera, D. V. Skibo, E. B. Solution kinetics of CC-1065 A-ring opening substituent effects and general acid/base catalysis, j. Am. Chem. Soc. 2006, 128, 3722-3727. [Pg.265]

A large number of modifications and refinements have been made on this equation, the most relevant being those which attempt to separate inductive < j and mesomeric Taft equation. In addition to substituent constants based on reactivity, acidity and the like, a variety of spectroscopically derived constants such as those from... [Pg.64]

Steric interactions between bulky substituents such as t-Bu, leading to larger C-E-C bond angles, obviously affect the Lewis basicity caused by the increased -character of the electron lone pair. However, the strength of the Lewis acid-base interaction within an adduct as expressed by its dissociation enthalpy does not necessarily reflect the Lewis acidity and basicity of the pure fragments, because steric (repulsive) interactions between the substituents bound to both central elements may play a contradictory role. In particular, adducts containing small group 13/15 elements are very sensitive to such interactions as was shown for amine-borane and -alane adducts... [Pg.231]

The Sn6P6 cages 19c and 19d are accessible by two different Bronsted acid-base reaction pathways Reaction of lc and Id, respectively, with two different stannanediyl derivatives furnished in 80-89% yield red-black crystals of the aggregates (Eq. 12) (39). The tin(II) phosphandiides are somewhat related to the previously described oligomeric bis (phosphaneyl) stannanediyls of the type PkSn, which easily form intermolecular aggregates (50, 51) or remain monomeric, if the phosphorus atoms bear very crowded organosilyl substituents (52). [Pg.263]

If the provoked or spontaneous acid-base reactions overcome the radical reactions of the primary radical, the secondary radical is easier to reduce, or to oxidize, than the substrate in most cases. Exceptions to this rule are scarce, but exist. They involve substrates that are particularly easy to reduce thanks to the presence of a strongly electron-withdrawing substituent (for reductions, electron-donating for oxidation), which is expelled upon electron transfer, thus producing a radical that lacks the same activation. Alkyl iodides and aryl diazonium cations are typical examples of such systems. [Pg.178]


See other pages where Substituents acid/base is mentioned: [Pg.158]    [Pg.426]    [Pg.26]    [Pg.259]    [Pg.71]    [Pg.445]    [Pg.506]    [Pg.511]    [Pg.123]    [Pg.124]    [Pg.127]    [Pg.122]    [Pg.123]    [Pg.856]    [Pg.506]    [Pg.511]    [Pg.786]    [Pg.3]    [Pg.44]    [Pg.83]    [Pg.121]    [Pg.573]    [Pg.290]    [Pg.304]    [Pg.369]    [Pg.516]    [Pg.291]    [Pg.321]    [Pg.133]    [Pg.134]    [Pg.137]    [Pg.192]    [Pg.397]    [Pg.495]    [Pg.503]    [Pg.518]    [Pg.527]   


SEARCH



Bases substituents

© 2024 chempedia.info