Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substituent effects on reaction intermediates

Similarly, carboxylic acid and ester groups tend to direct chlorination to the / and v positions, because attack at the a position is electronically disfavored. The polar effect is attributed to the fact that the chlorine atom is an electrophilic species, and the relatively electron-poor carbon atom adjacent to an electron-withdrawing group is avoided. The effect of an electron-withdrawing substituent is to decrease the electron density at the potential radical site. Because the chlorine atom is highly reactive, the reaction would be expected to have a very early transition state, and this electrostatic effect predominates over the stabilizing substituent effect on the intermediate. The substituent effect dominates the kinetic selectivity of the reaction, and the relative stability of the radical intermediate has relatively little influence. [Pg.704]

Nevertheless, many free-radical processes respond to introduction of polar substituents, just as do heterolytic processes that involve polar or ionic intermediates. The substituent effects on toluene bromination, for example, are correlated by the Hammett equation, which gives a p value of — 1.4, indicating that the benzene ring acts as an electron donor in the transition state. Other radicals, for example the t-butyl radical, show a positive p for hydrogen abstraction reactions involving toluene. ... [Pg.700]

Later work examined substituent effects on kinetically controlled alkylations [68, 69] (Scheme 32). Substitution at the 5-position is well tolerated in these reactions. Reductive lithiation of a series of 4-phenylthio-l,3-dioxanes and quenching of the axial alkyllithium intermediate with dimethyl sulfate provided the flzzfz -l,3-diols in good yield, with essentially complete selectivity. [Pg.83]

Substituent effects on the solvomercuration reaction differ markedly from those on many other electrophilic additions and these have been explained by assuming that the formation of the intermediate is often rate limiting in electrophilic additions whereas the reaction of the ionic intermediate with nucleophiles is rate limiting in solvomercuration147. In other words, the solvomercuration involves a fast pre-equilibrium formation of an intermediate, followed by rate-limiting attack of the nucleophile on this species. [Pg.626]

A kinetic smdy has been reported of substituent effects on the reactions of 2-phenoxy- and 2-(4-nitrophenoxy)-3-nitro-5-X-thiophenes with benzylamine and with A-methylbenzylamine in benzene as solvent. The intramolecularly hydrogen-bonded intermediate (14) is postulated. Reactions of the 5-unsubstimted thiophenes (X = H) are not base-catalysed, indicating that nucleophilic attack is rate limiting, and the more basic secondary amine shows higher reactivity than the primary... [Pg.280]


See other pages where Substituent effects on reaction intermediates is mentioned: [Pg.297]    [Pg.297]    [Pg.299]    [Pg.301]    [Pg.303]    [Pg.305]    [Pg.307]    [Pg.311]    [Pg.313]    [Pg.315]    [Pg.317]    [Pg.319]    [Pg.321]    [Pg.323]    [Pg.325]    [Pg.327]    [Pg.329]    [Pg.297]    [Pg.297]    [Pg.299]    [Pg.301]    [Pg.303]    [Pg.305]    [Pg.307]    [Pg.311]    [Pg.313]    [Pg.315]    [Pg.317]    [Pg.319]    [Pg.321]    [Pg.323]    [Pg.325]    [Pg.327]    [Pg.329]    [Pg.521]    [Pg.362]    [Pg.8]    [Pg.275]    [Pg.176]    [Pg.248]    [Pg.279]    [Pg.89]    [Pg.657]    [Pg.907]    [Pg.759]    [Pg.178]    [Pg.907]    [Pg.78]    [Pg.278]    [Pg.242]    [Pg.449]    [Pg.626]    [Pg.242]    [Pg.449]    [Pg.469]    [Pg.125]    [Pg.129]    [Pg.100]    [Pg.168]   
See also in sourсe #XX -- [ Pg.297 , Pg.298 ]




SEARCH



Substituents reactions

© 2024 chempedia.info