Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure supported metal nanoclusters

High-resolution transmission electron microscopy (HRTEM) has matured markedly in the preceding decade and has emerged as a powerful technique for investigation of nanostructured metal catalysts at the atomic level, even under working conditions. The ability to image the dynamic structure and morphology of supported metal nanocluster catalysts in such detail makes HRTEM an essential complement to the arsenal of spectroscopic techniques used for characterization of... [Pg.91]

This section of this chapter includes a brief review of methods of preparation and properties of supported metal nanoclusters only catalysts that have been relatively well characterized and found to be nearly uniform are considered. The nanoclusters described here lack the structural definition... [Pg.64]

There is good agreement between EXAFS data and theoretical results characterizing structure and bonding in supported metal nanoclusters and the metal-support interface. [Pg.73]

XAS can be used in several different ways to determine local structural information about catalysts in reactive atmospheres. This structural information may be static or dynamic it may be geometric or electronic. The depth of information that can be ascertained is often dependent upon the type of catalyst, for example, supported metal nanoclusters versus bulk or surface oxides. It may also be controlled by some property of the catalyst, for example, the concentration of the element in the catalyst that is being investigated. In this section a few examples are provided to highlight the importance and relevance of XAFS in catalyst characterization. The examples are focused on (1) structural information characterizing samples in reactive atmospheres, (2) transformation of one species to another, (3) oxidation state determination, (4) determination of supported metal cluster size and shape, and (5) electronic structure. These examples illustrate the type of information that can be learned about the catalyst from XAFS spectroscopy. [Pg.349]

Supported metal catalysts, M°/S, are typically two-components materials built up with a nanostructured metal component, in which the metal centre is in the zero oxidation state (M°), and with an inorganic support (S), quite various in its chemical and structural features [1], M° is the component typically deputed to the electronic activation of the reagents involved in the catalyzed reactions. S is typically a microstructured component mainly deputed to the physical support and to the dispersion of M° nanoclusters. [Pg.201]

The materials described in this chapter are denoted in the literature mostly as metal clusters or metal nanoclusters . However, the terminology metal clusters spans various scientific disciplines and has consequently multiple meanings, including plasmonic nanoparticles and various nanosized metallic structures. Therefore alternative names have been given, although they are at the moment supported only by a fraction of the scientific community quantum clusters [26], nanodots [27], metal quantum dots [25] and superatoms [28]. [Pg.310]

An alternative to this physical method of preparing structurally uniform metal clusters on supports involves chemistry by which molecular metal carbonyl clusters (e.g., [Rh6(CO)i6]) serve as precursors on the support. These precursors are decarbonylated with maintenance of the metal frame to give supported nanoclusters (e.g., Rh6). Advantages of this chemical preparation method are its applicability to many porous supports, such as zeolites (and not just planar surfaces) and the opportunities to use spectroscopic methods to follow the chemistry of synthesis of the precursor on the support and its subsequent decarbonylation. Zeolites, because their molecular-scale cages are part of a regular (crystalline) structure, offer the prospect of regular three-dimensional arrays of nanoclusters. [Pg.65]

The methods of structure determination of supported nanoclusters are essentially the same as those mentioned previously for supported metal complexes. EXAFS spectroscopy plays a more dominant role for the metal clusters than for the complexes because it provides good evidence of metal-metal bonds. Combined with density functional theory, EXAFS spectroscopy has provided much of the structural foundation for investigation of supported metal clusters. EXAFS spectroscopy provides accurate determinations of metal-metal distances ( 1-2%), but it gives only average structural information and relatively imprecise values of coordination numbers. EXAFS spectroscopy provides structure data that are most precise when the clusters are extremely small (containing about six or fewer atoms) and nearly uniform (Alexeev and Gates, 2000). [Pg.67]

The electronic structure, morphology, and chemical reactivity of metal nanoclusters have attracted considerable attention due to their extensive technological importance. Chemical reactions and their catalytic relevance have been investigated on a variety of well-characterized, supported model catalysts prepared by vapor deposition of catalytically relevant metals onto ultrathin oxide films in ultrahigh vacuum conditions. Such ultrathin film supports are usually prepared by vaporizing a parent metal onto a refractory metal substrate in an oxygen atmosphere at a high temperature. These unique model systems are particularly well suited for surface-... [Pg.305]


See other pages where Structure supported metal nanoclusters is mentioned: [Pg.77]    [Pg.78]    [Pg.80]    [Pg.84]    [Pg.92]    [Pg.307]    [Pg.215]    [Pg.412]    [Pg.123]    [Pg.77]    [Pg.78]    [Pg.80]    [Pg.84]    [Pg.92]    [Pg.307]    [Pg.110]    [Pg.214]    [Pg.327]    [Pg.328]    [Pg.328]    [Pg.335]    [Pg.391]    [Pg.466]    [Pg.466]    [Pg.74]    [Pg.86]    [Pg.162]    [Pg.50]    [Pg.65]    [Pg.71]    [Pg.72]    [Pg.486]    [Pg.53]    [Pg.68]    [Pg.74]    [Pg.75]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Metal nanoclusters

Nanoclusters

Structural support

Support structures

Supported nanoclusters

Supporting structure

© 2024 chempedia.info