Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Strain in epoxides

Angle strain is the main source of strain in epoxides but torsional strain that re suits from the eclipsing of bonds on adjacent carbons is also present Both kinds of strain are relieved when a ring opening reaction occurs... [Pg.678]

The release of ring strain in epoxides is probably responsible for the high reactivity of these special ethers. HI opens epoxides under mild conditions stereospecifically to iodohydrins (Scheme 26). The mechanism is similar to the reaction of bromide with epoxides (see Section 1.7.3.3). It should be noted, however, that reduction of epoxides to alkenes may occur if vicinal diiodides are intermediately formed, which can lose I2 under the reaction conditions. With the combination of acyl chloride and Nal unstable diiodides are avoided and 2-iodoethyl esters are formed from oxiranes (Scheme 27). ° ... [Pg.215]

The most striking chemical property of epoxides is their far greater reactivity toward nude ophilic reagents compared with that of simple ethers Epoxides react rapidly with nude ophiles under conditions in which other ethers are inert This enhanced reactivity results from the angle strain of epoxides Reactions that open the nng relieve this strain... [Pg.678]

The one general exception to the rule that ethers don t typically undergo Sn2 reactions occurs with epoxides, the three-membered cyclic ethers that we saw in Section 7.8. Epoxides, because of the angle strain in the three-membered ring, are much more reactive than other ethers. They react with aqueous acid to give 1,2-diols, as we saw in Section 7.8, and they react readily with many other nucleophiles as well. Propene oxide, for instance, reacts with HC1 to give l-chloro-2-propanol by Snj2 backside attack on the less hindered primary carbon atom. We ll look at the process in more detail in Section 18.6. [Pg.370]

The increase of the strain in the oxirane ring of organotin epoxides can be accounted... [Pg.115]

Alkenes strained by twist or r-bond torsion, such as E-cyclooctene, exhibit much lower barriers due to relief of strain in the TS for the oxygen transfer step. While the epoxidation of symmetrically substituted alkenes normally involve a symmetrical approach to the TT-bond, the TSs for epoxidation of E-cyclooctene and E-l-methylcyclooctene exhibit highly asymmetric transition structures. The AAE = 3.3 kcalmol" for E- versus Z-cyclooctene is clearly a reflection of the relative SE of these two medium ring alkenes (16.4 vs 4.2 kcalmol ) ". The classical activation barrier (AE ) for the highly strained bicyclo[3.3.1]non-l-ene is also quite low (Table 10, Figure 26). In these twist-strain alkenes, the approach of the peracid deviates markedly from the idealized spiro approach suggesting fliat this part of the potential energy surface is quite soft. [Pg.58]

The importance of 1,2- rather than 1,3-allylic strain in the vanadium(V)-catalysed BufOOH epoxidation directed by hydroxy groups has been assessed using (Z)-3-en-2-ols as model substrates344. [Pg.1181]

We first discussed the idea of ring strain in Chapter6, pp. 144-145. The true origin of strain is the poor overlap between the orbitaLs formingthe o bonds inside the three-membered ring. This is discussed in Chapter 15 where another piece of evidence for ring strain is the peculiar chemical shifts in the proton NMR spectra of epoxides and other three-membered rings. [Pg.435]

Vinyl epoxides and allylic carbonates are especially useful electrophiles because under the influence of palladium(O) they produce a catalytic amount of base since X- is an alkoxide anion. This is sufficiently basic to deprotonate most nucleophiles that participate in allylic alkylations and thus no added base is required with these substrates. The overall reaction proceeds under almost neutral conditions, which is ideal for complex substrates. The relief of strain in the three-niembered ring is responsible for the epoxide reacting with the palladium(O) to produce the zwitterionic intermediate. Attack of the negatively charged nucleophile at the less hindered end of the ic-allyl palladium intermediate preferentially leads to overall 1,4-addition of the neutral nucleophile to vinyl epoxides. [Pg.1332]


See other pages where Strain in epoxides is mentioned: [Pg.312]    [Pg.391]    [Pg.1]    [Pg.674]    [Pg.512]    [Pg.130]    [Pg.581]    [Pg.165]    [Pg.279]    [Pg.872]    [Pg.187]    [Pg.548]    [Pg.60]    [Pg.595]    [Pg.245]    [Pg.102]    [Pg.391]    [Pg.248]    [Pg.102]    [Pg.744]    [Pg.98]    [Pg.442]    [Pg.207]    [Pg.435]    [Pg.554]    [Pg.362]    [Pg.362]   
See also in sourсe #XX -- [ Pg.372 ]




SEARCH



Angle strain in epoxides

© 2024 chempedia.info